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Starting Point: Hedge



Online Learning Setup

Protocol (Hedge setting with K experts)

For t = 1, 2, . . .

• Learner plays wt ∈ △K

• Adversary picks ℓt ∈ [0, 1]K

Definition (Regret)

The regret after T rounds w.r.t expert k is defined as

Rk
T :=

T∑
t=1

(
w⊺

t ℓt − ℓkt

)

Goal: strategy for Learner keeping all Rk
T small.
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Skeptic Perspective

Someone claims that their strategy for setting wt ensures sublinear regret R
k
T = o(T ).

We’re at a workshop about sequential testing by betting. Let’s!

Forecasts wt are claimed to agree with Outcomes ℓt in the sense that

∀k : lim
T→∞

1

T

T∑
t=1

(
w⊺

t ℓt − ℓkt

)
≤ 0

Let’s read that as the claim that ℓ1, ℓ2, . . . come from any joint P satisfying

∀k , t : E
ℓt

[
w⊺

t ℓt − ℓkt

∣∣∣Ft−1

]
≤ 0
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Betting

If we assume the null is

H0 =

{
P on ℓ1, ℓ2, . . .

∣∣∣∣∀k , t : Eℓt
[
w⊺

t ℓt − ℓkt

∣∣∣Ft−1

]
≤ 0

}
Then what are the available e-values to bet on?

Theorem (Larsson, ISI WSC 2021 Virtual Talk)

Given Ft−1, all admissible e-values for H0 are of the form

Eηt (ℓt) := 1 +
K∑

k=1

ηkt

(
w⊺

t ℓt − ℓkt

)
for ηkt ≥ 0 (since they correspond to inequality constraints) and ηt ensuring

non-negativity minℓt∈[0,1]K Eηt (ℓt) ≥ 0, i.e.
∑K

k=1

(
ηkt − wk

t 1
⊺ηt

)
+
≤ 1.
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Actual betting strategy

Simple and effective: mix over experts k, repeating fixed bet η > 0 and

1 + η
(
w⊺

t ℓt − ℓkt

)
≥ eη(w

⊺
t ℓt−ℓkt )−η2/2

Definition (Hedge supermartingale; Chernov and Vovk 2009)

ΦT :=
K∑

k=1

1

K

T∏
t=1

eη(w
⊺
t ℓt−ℓkt )−η2/2 =

K∑
k=1

1

K
eηR

k
T−Tη2/2

Say we reject H0 when ΦT ≥ 1/α. This occurs for η =

√
2 ln K

α
T if

∃k : Rk
T ≥ 1

η
ln

K

α
+ T

η

2
=

√
2T ln

K

α



Defensive Forecasting

We have a test supermartingale ΦT against H0: the hypothesis that the Learner

guarantees sub-linear regret.

So?

We can turn this test into a strategy for Learner.

Idea: Always pick wt to ensure Φt does not get big.



Defensive Forecasting

We have a test supermartingale ΦT against H0: the hypothesis that the Learner

guarantees sub-linear regret.

So?

We can turn this test into a strategy for Learner.

Idea: Always pick wt to ensure Φt does not get big.



Defensive Forecasting

We have a test supermartingale ΦT against H0: the hypothesis that the Learner

guarantees sub-linear regret.

So?

We can turn this test into a strategy for Learner.

Idea: Always pick wt to ensure Φt does not get big.



Defensive Forecasting

Let’s see. We can guarantee

ΦT+1 ≤
K∑

k=1

1

K
eηR

k
T−Tη2/2

(
1 + η

(
w⊺

T+1ℓT+1 − ℓkT+1

))
(⋆)
= ΦT

Affine in ℓT+1. So set wT+1 to cancel coefficient:

0 =
K∑

k=1

1

K
eηR

k
T−Tη2/2η (wT+1 − ek) ⇒ wk

T+1 =
1
K eηR

k
T−Tη2/2η∑K

j=1
1
K eηR

j
T−Tη2/2η



Online Learning Consequence

Theorem (Freund and Schapire, 1997)

The algorithm

wk
T+1 =

eηR
k
T∑K

j=1 e
ηR j

T

with η =
√

2 lnK
T guarantees regret bounded by

∀k : Rk
T ≤

√
2T lnK



Postmortem

• We started with an online learning protocol.

• We desired small regret compared to any expert k

• We put forward a test supermartingale against that goal

• And then we synthesised an algorithm, from that test, achieving the goal.

E-Lessons

• (Desired) regret guarantees are generating the null

• Several goals ⇒ mixture martingale
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Squint



Squint

Squint tightens all the screws on the Hedge supermartingale.

What?

• No tuning parameter (η)

• Anytime

• Stochastic Luckiness

• Comparator adaptivity; quantile bounds; countably many experts K = ∞
• Same computational cost

How?

• Refined bets

• Prior on experts

• Prior on η (improper!)



Squint Supermartingale

Let us define the instantaneous regret in round t w.r.t. expert k by

rkt := w⊺
t ℓt − ℓkt

We know that critical rkt are small. So let’s use ever-so-slightly-tighter e-value

1 + ηrkt ≥ eηr
k
t −η2(rkt )

2

Definition (Squint supermartingale; Koolen and van Erven 2015)

Fix prior π ∈ △K . Define

ΦT :=
K∑

k=1

πk

∫ 1
2

0

eηR
k
T−η2V k

T − 1

η
dη where V k

T =
T∑
t=1

(rkt )
2



Ehh, did we need non-negativity?

ΦT :=
K∑

k=1

πk

∫ 1
2

0

eηR
k
T−η2V k

T − 1

η
dη

Mixture of centred supermartingales e
∑

t ... − 1 under improper prior 1
η dη possibly

negative

Still

ΦT ≥ − lnT .
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Defensive Forecasting for Squint

We have

ΦT+1 ≤
K∑

k=1

πk

∫ 1
2

0

eηR
k
T−η2V k

T

(
1 + η

(
w⊺

T+1ℓT+1 − ℓkT+1

))
− 1

η
dη

(⋆)
= ΦT

for the unique equaliser choice

0 =
K∑

k=1

πk

∫ 1
2

0
eηR

k
T−η2V k

T (wT+1 − ek) dη i.e. wk
T+1 =

πk
∫ 1

2
0 eηR

k
T−η2V k

T dη∑K
j=1 πj

∫ 1
2
0 eηR

j
T−η2V j

T dη

Cool feature: wT has a closed form expression (Gaussian CDFs) though ΦT does not.



Small is Beautiful for Squint

Theorem

∀T : ΦT ≤ Φ0 = 0 implies ∀k ,T : Rk
T ≤ 2

√
V k
T ln

lnT

πk

Why? Thinking about η =

√
ln lnT

πk

V k
T

gives

ΦT =
K∑

k=1

πk

∫ 1
2

0

eηR
k
T−η2V k

T − 1

η
dη ≈

K∑
k=1

πke

√
ln lnT

πk
Vk
T

Rk
T−ln lnT

πk − lnT

In fact the quantile upgrade is also true:

∀q ∈ △K ,T : E
k∼q

[
Rk
T

]
≤ 2

√
E

k∼q

[
V k
T

]
(KL(q∥π) + ln lnT )
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E-Lessons

We should explore

• deeply improper priors

• supermartingales possibly negative yet bounded below

• Mixtures and duality of KL (Donsker-Varadhan)

Muriel’s talk
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Intermezzo



Many cool ideas/extensions/techniques

Upgrade to online convex optimisation (continuously many actions).

MetaGrad (van Erven and Koolen, 2016)

Black-Box reductions (Cutkosky and Orabona, 2018)

FreeGrad (Mhammedi and Koolen, 2020), this blog post E-laborates

Coin Betting (Orabona and Pal, 2016)

http://blog.wouterkoolen.info/FreeGradMart/post.html


Muscada



Multi-Scale Update to the Protocol

Fix a vector σ ∈ (0,∞)K of positive loss ranges.

Now let’s say the losses ℓt are such that ℓkt ∈ [±σk ].

We want regret bounded by

∀k : Rk
T ≤ σk

√
T lnK

Connection to chaining.



Failure

Let’s try something akin to

ΦT =
∑
k

1

K
eηkR

k
T−Tη2k/2

Recall that

eηr
k
t −η2/2 where rkt = w⊺

t ℓt − ℓkt

is an e-value for rkt ∈ [±1], which follows from ℓt ∈ [0, 1]K . But now ℓkt ∈ [±σk ].

Problem For any k , even with σk small, |rkt | can be as high as maxj σj .



Muscada Supermartingale

Inspiration:

Fact (Duality for KL)

For any π ∈ △ and X ∈ RK , ln
∑
k

πke
Xk = max

w∈△K

⟨w,X ⟩ − KL(w∥π).

Define µT by µk
T := σk

√
T lnK . Recall that we want Rk

T ≤ µk
T .

Definition (Muscada supermartingale)

ΦT := Φ(RT − µT ,ηT ) := max
w∈△(K)

⟨w,RT − µT ⟩ − DηT
(w,u).

where for w,u ∈ △K the relative entropy at multi-scale η is

Dη(w,u) =
K∑

k=1

wk ln(wk/uk)− wk + uk
ηk
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Muscada Analysis

Recall µk
T := σk

√
T lnK , and let us fix ηkT ≈ 1

σk

√
lnK
T

Φt ≤ Φ(Rt − µt ,ηt−1) η 7→ Dη decr.

= Φ(Rt − µt−1 − 4ηt−1σ
2,ηt−1) by def. of µt

≤ Φ(Rt−1 − µt−1,ηt−1) by range control

= max
w∈△(K)

⟨w,Rt−1 − µt−1⟩ − Dηt−1(w,u) by def. of Φ

= ⟨wt ,Rt−1 − µt−1⟩ − Dηt−1(wt ,u) by def. of wt

≤ max
w∈△(K)

⟨w,Rt−1 − µt−1⟩ − Dηt−1(w,u) since wt ∈ △(K )

= Φ(Rt−1 − µt−1,ηt−1) = Φt−1 by def. of Φ, Φt .

Hence, Φt ≤ Φt−1, as we were to show.



Postmortem

Indeed

Rk
T ≤ σk

√
T lnK

E-lessons

• Should investigate how to combine test supermartingales with subtle dependence



Conclusion



Conclusion

• Many cool relations between testing and learning

• Let’s talk more!

Thanks!
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