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Focus on expert setting

Online sequential prediction with expert advice

. . .

Core instance of advanced online learning tasks

I Bandits

I Combinatorial & matrix prediction

I Online convex optimization

I Boosting

I . . .



Beyond the Worst Case
Two reasons data is often easier in practice:

Data complexity

I Stochastic data (gap)

I Low noise

I Low variance

second-
order

Model complexity

I Simple model is good

I Multiple good models

quantiles

Second-order & Quantiles

I Any combination
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All we need is the right learning rate

Existing
algorithms
(Hedge, Prod, . . . )

with

oracle
learning rate η

exploit

Sec-ord. & Quant.

Can we exploit Second-order & Quantiles on-line?

Can we learn the learning rate?
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But everyone struggles with the learning rate
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Main Result
Our new algorithm Squint

learns the learning rate. It offers

Second-order & Quantiles

I Run-time of Hedge
I Tiny (ln lnT ) overhead over oracle learning rate.
I Extension to Combinatorial Games
I Extension to Continuous domains (MetaGrad)



Overview

I Fundamental online learning problem

I Review previous guarantees

I New Squint algorithm with improved guarantees



Fundamental model for learning: Hedge setting

I K experts

. . .

I In round t = 1, 2, . . .
I Learner plays distribution wt = (w1

t , . . . ,w
K
t ) on experts

I Adversary reveals expert losses `t = (`1t , . . . , `
K
t ) ∈ [0, 1]K

I Learner incurs loss wᵀ
t `t

I The goal is to have small regret

Rk
T :=

T∑
t=1

wᵀ
t `t︸ ︷︷ ︸

Learner

−
T∑
t=1

`kt︸ ︷︷ ︸
Expert k

with respect to every expert k .
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Classic Hedge Result

The Hedge algorithm with learning rate η

wk
t+1 :=

e−ηL
k
t∑

k e
−ηLkt

where Lkt =
t∑

s=1

`ks ,

upon proper tuning of η ensures [Freund and Schapire, 1997]

Rk
T ≺

√
T lnK for each expert k

which is tight for adversarial (worst-case) losses

but underwhelming in practice

Two broad lines of improvement.

Second-order bounds Quantile bounds
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Second-order bounds

Cesa-Bianchi et al. [2007], Hazan and Kale [2010], Chiang et al.
[2012], De Rooij et al. [2014], Gaillard et al. [2014], Steinhardt and
Liang [2014]

Rk
T ≺

√
V k
T lnK for each expert k .

for some second-order quantity V k
T ≤ LkT ≤ T .

I Pro: stochastic case, learning sub-algorithms

I Con: specialized algorithms. hard-coded K .
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Quantile bounds

Hutter and Poland [2005], Chaudhuri et al. [2009], Chernov and
Vovk [2010], Luo and Schapire [2014]

Prior π on experts:

min
k∈K

Rk
T ≺

√
T
(
− lnπ(K)

)
for each subset K of experts

I Pro: over-discretized models, company baseline

I Con: specialized algorithms. Efficiency. Inescapable T .
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Our contribution

Squint [Koolen and Van Erven, 2015] guarantees

RKT ≺
√
VKT
(
− lnπ(K) + CT

)
for each subset K of experts

where RKT = Eπ(k|K) Rk
T and VKT = Eπ(k|K) V k

T denote the average
(under the prior π) among the reference experts k ∈ K of the
regret Rk

T =
∑T

t=1 r
k
t and the (uncentered) variance of the excess

losses V k
T =

∑T
t=1(rkt )2 (where rkt = (wt − ek)ᵀ`t).



The cool . . .

I Squint aggregates over all learning rates

I While staying as efficient as Hedge



Squint

Fix prior π(k) on experts and γ(η) on learning rates η ∈ [0, 1/2].

Potential function

ΦT := E
π(k)γ(η)

[
eηR

k
T−η

2V k
T

]
,

Weights

wk
T+1 :=

π(k)Eγ(η)
[
eηR

k
T−η

2V k
T η
]

normalisation
.

Next:

I Argue weights ensure 1 = Φ0 ≥ Φ1 ≥ Φ2 ≥ · · · .
I Derive second-order quantile bound from ΦT ≤ 1.
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Squint Analysis: Potential Decreases

Theorem
Squint ensures: 1 = Φ0 ≥ Φ1 ≥ Φ2 ≥ · · ·

Proof.
Let f k,ηT := eηR

k
T−η

2V k
T so that ΦT = Eπ(k)γ(η)

[
f k,ηT

]
.

Then

ΦT+1 = E
π(k)γ(η)

[
f k,ηT+1

]
= E

π(k)γ(η)

[
f k,ηT eηr

k
T+1−(ηr

k
T+1)

2
]

≤ E
π(k)γ(η)

[
f k,ηT (1 + ηrkT+1)

]
= ΦT + E

π(k)γ(η)

[
f k,ηT η(wT+1 − ek)

]ᵀ
`T+1

and the weights wT+1 ∝ Eπ(k)γ(η)
[
f k,ηT ηek

]
ensure

E
π(k)γ(η)

[
f k,ηT η(wT+1 − ek)

]
= E
π(k)γ(η)

[
f k,ηT η

]
wT+1− E

π(k)γ(η)
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Squint Analysis: Regret Bound

We have 1 ≥ ΦT . So for any k and η

0 ≥ ln ΦT = ln E
π(k)γ(η)

[
eηR

k
T−η

2V k
T

]
≥ ln

(
π(k)γ(η)eηR

k
T−η

2V k
T

)
= lnπ(k) + ln γ(η) + ηRk

T − η2V k
T

Now maxη
{
ηRk

T − η2V k
T

}
=

(Rk
T )

2

4V k
T

at η̂ =
Rk
T

2V k
T

and hence

(Rk
T )2

4V k
T

≤ − lnπ(k)− ln γ(η̂),

so

Rk
T ≤ 2

√
V k
T (− lnπ(k)− ln γ(η̂)︸ ︷︷ ︸

CT

) for all k .
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Three priors

Idea: have prior γ(η) put sufficient mass around optimal η̂

1. Uniform prior (generalizes to conjugate)

γ(η) = 2

Efficient algorithm, CT = lnVKT .

2. Chernov and Vovk [2010] prior

γ(η) =
ln 2

η ln2(η)

Not efficient, CT = ln lnVKT .

3. Improper(!) log-uniform prior

γ(η) =
1

η

Efficient algorithm, CT = ln lnT
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Implementation of Squint w. log-uniform prior

Closed-form expression for weights:

wk
T+1 ∝ π(k)

∫ 1/2

0
eηR

k
T−η

2V k
T η

1

η
dη

∝ π(k)e

(Rk
T )2

4Vk
T

erf

(
Rk
T

2
√

V k
T

)
− erf

(
Rk
T−V

k
T

2
√

V k
T

)
√
V k
T

.

Note: erf part of e.g. C99 standard.
Constant time per expert per round



Extensions I

Combinatorial concept class C ⊆ {0, 1}K :

I Shortest path

I Spanning trees

I Permutations

I . . .

Component iProd [Koolen and Van Erven, 2015] guarantees:

Ru
T ≺

√
V u
T

(
comp(u) + KCT

)
for each u ∈ conv(C).

The reference set of experts K is subsumed by an “average
concept” vector u ∈ conv(C), for which our bound relates the
coordinate-wise average regret Ru

T =
∑

t,k uk r
k
t to the averaged

variance V u
T =

∑
t,k uk(rkt )2 and the prior entropy comp(u).

No range factor. Drop-in replacement for Component Hedge
[Koolen, Warmuth, and Kivinen, 2010]
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Extensions II

Setup generalized to

I Continuous (bounded) domain U ⊆ Rd

I Convex loss functions ft : U → R
Includes:

I Previous settings (linear)

I Online convex optimization

MetaGrad [Van Erven and Koolen, 2016] guarantees:

Ru
T ≺

√
V u
T d lnT for each u ∈ U .

I Weights become Gaussians.

I Run-time O(d2) per round (like Online Newton Step).
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Conclusion

Central idea: learning the learning rate

A new set of tools

I fresh

I different

I efficient

for the well-studied experts problem.

Powerful generalizations to more complex problems.



Thank you!


