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The online learning philosophy

Want to solve a learning problem?

I Get hold of a bunch of
I trivial approaches ,
I models from literature /
I students ($)
I employees ($$)
I companies ($$$)
I . . .

I Each “expert” implements a solution

I Use aggregation algorithm to combine solutions in production

I Profit!
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That aggregation algorithm

T rounds, K experts

LT −min
k

LkT︸ ︷︷ ︸
regret

≤
√

T/2 lnK

What if

I Lots of experts? shotgun-style “throw in all you got”

I Special experts? company’s current strategy
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Regret as a multi-objective criterion

A vector 〈r1 . . . rK 〉 is T -realisable if there is a strategy ensuring

LT − LkT ≤ rk for each expert k

Suggestive: for every expert prior P, the following is T -realisable:〈√
T/2 (− lnP(k))

〉K
k=1

????

but this is false

So what can be realised?
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Results in a nutshell

I Absolute loss (or K = 2 experts)
I Exact results

I Characterisation of T -realisable frontier (combinatorial)
I Strategy for each trade-off

I Asymptotic (large T ):
I Smooth limit frontier
I Smooth limit strategy
I For any p ∈ [0, 1] we can realise:〈√

T (− ln(p)),
√

T (− ln(1− p))
〉

but we can do better(!)

I For K > 2 experts
I For every expert prior P(k), we can realise〈√

2.6T (− lnP(k))
〉K
k=1

using a recursive combination of 2-expert algorithms.
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Absolute loss game

Each round t ∈ {1, . . . ,T} the learner assigns a probability
pt ∈ [0, 1] to the next outcome being a 1, after which the actual
outcome xt ∈ {0, 1} is revealed, and the learner suffers

absolute loss |pt − xt |.

The regret w.r.t. the strategy that always predicts k ∈ {0, 1} is

Rk
T :=

T∑
t=1

(
|pt − xt | − |k − xt |

)
A candidate trade-off 〈r0, r1〉 ∈ R2 is called T -realisable for the
T -round absolute loss game if there is a strategy that keeps the
regret w.r.t. each k ∈ {0, 1} below rk , i.e. if

∃p1∀x1 · · · ∃pT∀xT : R0
T ≤ r0 and R1

T ≤ r1

We denote the set of all T -realisable trade-offs by GT .



The set GT , i.e. the T -realisable tradeoffs 〈r0, r1〉
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Pareto Frontier and Optimal Strategy
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Theorem
The Pareto frontier of GT is piece-wise linear with T + 1 vertices:

〈
fT (i), fT (T − i)

〉
0 ≤ i ≤ T where fT (i) :=

i∑
j=0

j2j−T

(
T − j − 1

T − i − 1

)
.

The optimal strategy at vertex i assigns to x = 1 probability

pT (0) := 0, pT (T ) := 1, pT (i) :=
fT−1(i)− fT−1(i − 1)

2
0 < i < T ,

and it interpolates linearly in between consecutive vertices.



Asymptotic analysis

Idea: normalise and then make T large

G := lim
T→∞

GT√
T
.
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Asymptotic plot (moderate)
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Asymptotic plot (tail)

1

10

1e-50 1e-40 1e-30 1e-20 1e-10 1

n
or

m
al

is
ed

re
gr

et
w

.r
.t

.
ex

p
er

t
2

normalised regret w.r.t. expert 1

limit frontier

T = 10000√
− lnP(k)



Asymptotic Pareto Frontier and Optimal Strategy

Theorem
The Pareto frontier of G is the smooth curve〈

f (u), f (−u)
〉

u ∈ R, where f (u) :=

∫ u

−∞
Φ(x) dx ,

and Φ(u) := 1√
2π

∫ u
−∞ e−

x2

2 dx is the standard normal CDF . The

optimal strategy converges to

p(u) = Φ(u).



Use of asymptotics

I Smooth formula easier to handle

I Allows us to appreciate that sqrt-min-log-prior tradeoffs are
realisable with constant 1 (not 1/

√
2) . . .

I . . . but have suboptimal lower-order terms.

I Suggests smoothened algorithms



K > 2 experts

Combine algorithm for K = 2 into unbalanced binary tree.

Outermost algorithm combines expert with least prior vs rest

Gives us √
2.6T (− lnP(k))

But we would like to have the exact Pareto frontier.
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Conclusion

I We need unfair regret bounds

I Reinterpret regret as a multi-criterion objective

I Exact Pareto frontier for K = 2 experts

I with optimal algorithm

I And useful formula for asymptotic Pareto frontier

I with asymptotic algorithm

I Trick for K > 2 experts
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