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Extreme Qutliers Can Break Learning

Outlier

X2

Logistic regression without outlier .
— Logistic regression with outlier . A

X1

Reasons for outliers:
» Naturally heavy-tailed data
» A small subset of malicious users trying to corrupt data stream
» Glitches in cheap sensors

Heavily studied:
» In statistics [Tukey, 1959, Huber, 1964], stochastic optimization, etc.

» But not yet in Online Convex Optimization
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Formalizing Robust OCO

Standard OCO setting:
Given convex domain W C RY with diameter(W) < D

fort=1,2,..., T do

Predict w; in W

Observe convex loss function f; : WW — R with gradient g, = Vf(w;)
end for

Rr(w,5) =Y (f(w) — fi(w))
te
Challenges:
» Inliers S C {1,..., T} unknown (chosen by adversary)

» Bounds cannot depend on outliers at all, but must scale with
G(S) = max .
(S) = max|lgc|
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Robustifying Any OCO Algorithm

1. Any OCO ALG with regret bound Br(G) if gradients have length
at most G

2. Top-k Filter: simple strategy to filter out large gradients

Theorem (At most k outliers)
On linear losses, ALG + Top-k Filter achieves

Rr(u,S) < Br(2G(S)) + 4DG(S)(k+1)  forany S: T —|S| < k.

Feed ALG gradients < 2G(S)
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price of robustness = O(G(S)k)
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Robustifying Any OCO Algorithm

1. Any OCO ALG with regret bound B (G) if gradients have length
at most G

2. Top-k Filter: simple strategy to filter out large gradients

Theorem (At most k outliers)
On linear losses, ALG + Top-k Filter achieves

Rr(u,S) < Br(2G(S)) + 4DG(S)(k + 1) forany S: T —|S| < k.

Losses Minimax Robust Regret
General convex O(VT + k)
General convex + i.i.d. "

Strongly convex O(In(T) + k)
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Efficient Filtering Approach

» Maintain list £; of k + 1 largest gradient lengths seen so far
> Filter round if ||g¢|| > 2 min L;; otherwise pass to ALG

Main ldeas:
1. Never pass ALG gradients > 2G(S):

» L[ contains at least 1 inlier, because at most k outliers
» Hence min L; < G(S)

2. Overhead for filtering is O(k)

» Every filtered round is also added to L
» Therefore min L, (at least) doubles every k + 1 filtered rounds
» Hence last k + 1 filtered rounds dominate
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Application: Robustified Online-to-Batch

Outlier distribution

—

Huber e-contamination model: P.=(1—¢€)P+eQ

Distribution of interest
> fi(w) = f(w,§) where & ~ P,
» Inlier risk: Riskp(w) = E¢op[f(w, )]

6/8



Application: Robustified Online-to-Batch

Outlier distribution

—

Huber e-contamination model: P.=(1—¢€)P+eQ

Distribution of interest
> fi(w) = f(w,§) where & ~ P,
» Inlier risk: Riskp(w) = E¢op[f(w, )]

Corollary (Optimal Rate via Robust Online-to-Batch)

Suppose ||Vf(w,&)|| < G a.s. when & ~ P is an inlier.
Then iterate average Wt = + 2;1 w; of OGD + Top-k Filter achieves

Riskp(wr) — min Riskp(u) = O (DG6+ DG _'"(1/5))
ueEWwW T

with P_-probability at least 1 — §, for some k tuned for €, 6, T.
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Quantile Outliers
Which extra assumptions allow
dependence on number of outliers k?

> |lg:]| < L||X¢]| fori.i.d. X; (e.g. hinge loss, logistic loss)
» Inliers S, are rounds s.t. || X;|| less than p-quantile X
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Which extra assumptions allow
dependence on number of outliers k?

> |lg:]| < L||X¢]| fori.i.d. X; (e.g. hinge loss, logistic loss)
» Inliers S, are rounds s.t. || X;|| less than p-quantile X

Theorem (Sublinear Outlier Overhead)

Suppose ALG has regret bound Bt(X), concave in T, if non-filtered X
have length at most X. Then ALG + achieves

E [316% RT(u,SP)] < Byr(X,)+ O (LDX,,\/WJr In(T)2> .

> Filter when || X|| > lower-confidence bound on X,
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Summary

Robust regret: measure regret only on (unknown) inlier rounds

Price of Robustness = Overhead over usual regret rate:
> At most k adversarial outliers: O(k)

> p-Quantile outliers: O(y/p(L — p) T In(T) + In(T)?)

PS. | am looking for a postdoc, starting anytime in 2022,
Please get in touch if you want to come to Amsterdam!
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