Robust Online Convex Optimization in the Presence of Outliers

Tim van Erven

COLT 2021

Sarah Sachs

Wouter Koolen

Wojciech Kotłowski

Recruiting: Postdoc position in my group available 2022

Extreme Outliers Can Break Learning

Reasons for outliers:

- Naturally heavy-tailed data
- ► A small subset of **malicious users** trying to corrupt data stream
- Glitches in cheap sensors

Heavily studied:

- In statistics [Tukey, 1959, Huber, 1964], stochastic optimization, etc.
- ▶ But not yet in Online Convex Optimization

Formalizing Robust OCO

Standard OCO setting:

Given convex domain $\mathcal{W} \subset \mathbb{R}^d$ with diameter(\mathcal{W}) $\leq D$

- 1: **for** t = 1, 2, ..., T **do**
- 2: Predict w_t in W
- 3: Observe convex loss function $f_t: \mathcal{W} o \mathbb{R}$ with gradient $m{g}_t =
 abla f_t(m{w}_t)$
- 4: end for

Robust regret:
$$R_T(u, S) = \sum_{t \in S} (f_t(w_t) - f_t(u))$$

Challenges:

- ▶ Inliers $S \subset \{1, ..., T\}$ unknown (chosen by adversary)
- ▶ Bounds cannot depend on outliers at all, but must scale with

$$G(S) = \max_{t \in S} \|g_t\|.$$

Robustifying Any OCO Algorithm

- 1. Any OCO ALG with regret bound $B_T(G)$ if gradients have length at most G
- 2. Top-k Filter: simple strategy to filter out large gradients

Theorem (At most k outliers)

On linear losses, ALG + Top-k Filter achieves

$$R_T(u, S) \leq \underbrace{B_T(2G(S))}_{} + 4DG(S)(k+1)$$
 for any $S: T - |S| \leq k$.

Feed ALG gradients $\leq 2G(S)$

Robustifying Any OCO Algorithm

- 1. Any OCO ALG with regret bound $B_T(G)$ if gradients have length at most G
- 2. Top-k Filter: simple strategy to filter out large gradients

Theorem (At most k outliers)

On linear losses, ALG + Top-k Filter achieves

$$R_T(u,\mathcal{S}) \leq B_Tig(2G(\mathcal{S})ig) + 4DG(\mathcal{S})(k+1)$$
 for any $\mathcal{S}: T - |\mathcal{S}| \leq k$.

price of robustness =
$$O(G(S)k)$$

Robustifying Any OCO Algorithm

- 1. Any OCO ALG with regret bound $B_T(G)$ if gradients have length at most G
- 2. Top-k Filter: simple strategy to filter out large gradients

Theorem (At most k outliers)

On linear losses, ALG + Top-k Filter achieves

$$R_T(u,\mathcal{S}) \leq B_Tig(2G(\mathcal{S})ig) + 4DG(\mathcal{S})(k+1)$$
 for any $\mathcal{S}: T - |\mathcal{S}| \leq k$.

Losses	Minimax Robust Regret
General convex	$O(\sqrt{T}+k)$
${\sf General\ convex} + {\sf i.i.d.}$	11
Strongly convex	$O(\ln(T) + k)$

Efficient Filtering Approach

Top-*k* **Filter:**

- ▶ Maintain list \mathcal{L}_t of k+1 largest gradient lengths seen so far
- Filter round if $||g_t|| > 2 \min \mathcal{L}_t$; otherwise pass to ALG

Main Ideas:

- 1. Never pass ALG gradients > 2G(S):
 - \triangleright \mathcal{L}_t contains at least 1 inlier, because at most k outliers
 - ▶ Hence min $\mathcal{L}_t \leq G(\mathcal{S})$
- 2. Overhead for filtering is O(k)
 - \triangleright Every filtered round is also added to \mathcal{L}_t
 - ▶ Therefore min \mathcal{L}_t (at least) doubles every k+1 filtered rounds
 - \blacktriangleright Hence last k+1 filtered rounds dominate

Application: Robustified Online-to-Batch

Outlier distribution

Huber ϵ -contamination model:

$$P_{\epsilon} = (1 - \epsilon)P + \epsilon Q$$

Distribution of interest

- $f_t(w) = f(w, \xi)$ where $\xi \sim P_{\epsilon}$
- ▶ Inlier risk: Risk $_P(w) = \mathbb{E}_{\xi \sim P}[f(w, \xi)]$

Application: Robustified Online-to-Batch

Outlier distribution

Huber ϵ -contamination model:

$$P_{\epsilon} = (1 - \epsilon)P + \epsilon Q$$

Distribution of interest

- $ightharpoonup f_t(w) = f(w, \xi)$ where $\xi \sim P_{\epsilon}$
- ▶ Inlier risk: Risk $_P(w) = \mathbb{E}_{\xi \sim P}[f(w, \xi)]$

Corollary (Optimal Rate via Robust Online-to-Batch)

Suppose $\|\nabla f(w,\xi)\| \leq G$ a.s. when $\xi \sim P$ is an inlier.

Then iterate average $\bar{w}_T = \frac{1}{T} \sum_{t=1}^{T} w_t$ of OGD + Top-k Filter achieves

$$\mathsf{Risk}_P(ar{m{w}}_T) - \min_{m{u} \in \mathcal{W}} \mathsf{Risk}_P(m{u}) = O\left(DG\epsilon + DG\sqrt{rac{\mathsf{In}(1/\delta)}{T}}
ight)$$

with P_{ϵ} -probability at least $1-\delta$, for some k tuned for ϵ, δ, T .

Quantile Outliers

Which extra assumptions allow sublinear dependence on number of outliers *k*?

- lacksquare $\|g_t\| \leq L \|X_t\|$ for i.i.d. X_t (e.g. hinge loss, logistic loss)
- ▶ Inliers S_p are rounds s.t. $\|X_t\|$ less than p-quantile X_p

Quantile Outliers

Which extra assumptions allow sublinear dependence on number of outliers *k*?

- lacksquare $\|g_t\| \leq L \|X_t\|$ for i.i.d. X_t (e.g. hinge loss, logistic loss)
- lacksquare Inliers \mathcal{S}_p are rounds s.t. $\|oldsymbol{X}_t\|$ less than p-quantile X_p

Theorem (Sublinear Outlier Overhead)

Suppose ALG has regret bound $B_T(X)$, concave in T, if non-filtered X_t have length at most X. Then ALG + p-Quantile Filter achieves

$$\mathbb{E}\left[\max_{\boldsymbol{u}\in\mathcal{W}}R_T(\boldsymbol{u},\mathcal{S}_p)\right] \leq B_{pT}(X_p) + O\left(LDX_p\sqrt{p(1-p)T\ln T} + \ln(T)^2\right).$$

p-Quantile Filter:

▶ Filter when $\|X_t\|$ ≥ lower-confidence bound on X_p

Summary

Robust regret: measure regret only on (unknown) inlier rounds

Price of Robustness = Overhead over usual regret rate:

- At most k adversarial outliers: O(k)
- ▶ p-Quantile outliers: $O(\sqrt{p(1-p)T\ln(T)} + \ln(T)^2)$

PS. I am looking for a postdoc, starting anytime in 2022. Please get in touch if you want to come to Amsterdam!