MetaGrad Multiple Learning Rates in Online Learning

http://bitbucket.org/wmkoolen/metagrad

Tim van Erven

Wouter M. Koolen

NIPS, Barcelona Tuesday 6th December, 2016

In a Nutshell

$$\min_{\boldsymbol{w}} \sum_{t=1}^{\prime} f_t(\boldsymbol{w})$$

$$\min_{\boldsymbol{w}} \sum_{t=1}^{I} f_t(\boldsymbol{w})$$

Batch Training (classification)

Objective

Definition (Regret)

$$R_T = \underbrace{\sum_{t=1}^{T} f_t(w_t)}_{\text{Online loss}} - \underbrace{\min_{u} \sum_{t=1}^{T} f_t(u)}_{\text{Optimal loss}}$$

Online Gradient Descent [Zinkevich, 2003]

$$|\boldsymbol{w}_{t+1}| = |\boldsymbol{w}_t - \boldsymbol{\eta}_t \nabla f_t(\boldsymbol{w}_t)|$$

Online Gradient Descent [Zinkevich, 2003]

$$|\boldsymbol{w}_{t+1}| = |\boldsymbol{w}_t - \frac{\eta}{\eta_t} \nabla f_t(\boldsymbol{w}_t)|$$

Worst-case regret guarantee:

$$R_T = O\left(\sqrt{T}\right)$$

Online Gradient Descent [Zinkevich, 2003]

$$|\boldsymbol{w}_{t+1}| = |\boldsymbol{w}_t - \frac{\boldsymbol{\eta}_t}{\nabla} f_t(\boldsymbol{w}_t)|$$

Worst-case regret guarantee:

$$R_T = O\left(\sqrt{T}\right)$$

Loss Taxonomy \sim Curvature

Big Questions

Can we make **adaptive** methods for **online convex optimisation** that are

- worst-case safe
- exploit curvature automatically
- computationally efficient

Big Questions

Can we make **adaptive** methods for **online convex optimisation** that are

- worst-case safe
- exploit curvature automatically
- computationally efficient

And can we adapt to other important regimes?

- Mixed or in-between cases?
- Stochastic data? Bandits [Seldin and Slivkins, 2014]
- Absence of curvature? Experts [Koolen and Van Erven, 2015]

For every optimisation algorithm tuning is crucial.

For every optimisation algorithm tuning is crucial.

So let's **learn** optimal tuning from data.

For every optimisation algorithm tuning is crucial.

So let's **learn** optimal tuning from data.

Key obstacle: avoid learning η at **slow rate** itself.

For every optimisation algorithm tuning is crucial.

So let's learn optimal tuning from data.

Key obstacle: avoid learning η at **slow rate** itself.

Breakthrough: Multiple Eta Gradient algorithm (MetaGrad)

$$w = \frac{\sum_{i} \pi_{i} \eta_{i} w_{i}}{\sum_{i} \pi_{i} \eta_{i}}$$

$$m{w} = rac{\sum_i \pi_i m{\eta}_i m{w}_i}{\sum_i \pi_i m{\eta}_i}$$
 $m{\pi}_i \leftarrow m{\pi}_i m{e}^{-m{\eta}_i m{r}_i - m{\eta}_i^2 m{r}_i^2}$ where $m{r}_i = (m{w}_i - m{w})^{\intercal} m{g}$ Tilted Exponential Weights

MetaGrad Algorithm

 η_1 η_2 w_1 w_2 $w = \frac{\sum_{i} \pi_{i} \eta_{i} w_{i}}{\sum_{i} \pi_{i} \eta_{i}}$ $\pi_i \leftarrow \pi_i e^{-\frac{\eta_i}{\eta_i} r_i - \frac{\eta_i^2}{\eta_i^2} r_i^2}$ where $r_i = (w_i - w)^{\mathsf{T}} g$

Tilted Exponential Weights

 $q = \nabla f(w)$

 η_3

Second-order Regret Bound

Theorem

The regret of MetaGrad is bounded by

$$R_T = O\left(\min\left\{\sqrt{T}, \sqrt{V_T d \ln T}\right\}\right),$$

where

$$V_{\mathsf{T}} = \sum_{t=1}^{r} ((w_t - u^*)^{\mathsf{T}} \nabla f_t(w_t))^2$$

measures variance compared to the offline optimum $u^* = \arg\min_{u} \sum_{t=1}^{T} f_t(u)$

Note: Optimal tuning depends on unknown optimum u^* .

MetaGrad Adapts to Curvature

MetaGrad regret bound:

$$R_T = O\left(\sqrt{V_T d \ln T}\right)$$

Corollary

For α -exp-concave or α -strongly convex losses, MetaGrad ensures

$$R_T = O(d \ln T)$$

without knowing α .

MetaGrad Adapts to Curvature

MetaGrad regret bound:

$$R_T = O\left(\sqrt{V_T d \ln T}\right)$$

Corollary

For α -exp-concave or α -strongly convex losses, MetaGrad ensures

$$R_T = O(d \ln T)$$

without knowing α .

Same result for fixed $f_t = f$ (classical optimisation) even without curvature via derivative condition.

MetaGrad Adapts to Curvature

MetaGrad regret bound:

$$R_T = O\left(\sqrt{V_T d \ln T}\right)$$

Corollary

For α -exp-concave or α -strongly convex losses, MetaGrad ensures

$$R_T = O(d \ln T)$$

without knowing α .

Same result for fixed $f_t = f$ (classical optimisation) even without curvature via derivative condition.

Reason

Curvature implies $\Omega(V_T)$ cumulative slack between loss and its tangent lower bound.

Consider i.i.d. losses $f_t \sim \mathbb{P}$ with **stochastic optimum**

$$u^* = \arg\min_{u} \mathbb{E} f(u)$$

Goal is small **pseudo-regret** compared to u^* :

$$R_T^* = \sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u^*)$$

Consider i.i.d. losses $f_t \sim \mathbb{P}$ with **stochastic optimum**

$$u^* = \underset{u}{\operatorname{arg\,min}} \mathbb{E} f(u)$$

Goal is small **pseudo-regret** compared to u^* :

$$R_T^* = \sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u^*)$$

Corollary

For any $\beta ext{-Bernstein }\mathbb{P}$, MetaGrad keeps the expected regret below

$$\mathbb{E} R_T^* \leq O\left((d \ln T)^{\frac{1}{2-\beta}} T^{\frac{1-\beta}{2-\beta}}\right).$$

Fast rates without curvature: e.g. absolute loss, hinge loss, ...

Consider i.i.d. losses $f_t \sim \mathbb{P}$ with **stochastic optimum**

$$u^* = \underset{u}{\operatorname{arg\,min}} \mathbb{E} f(u)$$

Goal is small **pseudo-regret** compared to u^* :

$$R_T^* = \sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u^*)$$

Corollary

For any β -Bernstein \mathbb{P} , MetaGrad keeps the expected regret below

$$\mathbb{E} R_T^* \leq O\left((d \ln T)^{\frac{1}{2-\beta}} T^{\frac{1-\beta}{2-\beta}}\right).$$

Fast rates without curvature: e.g. absolute loss, hinge loss, ...

Reason

Bernstein bounds $\mathbb{E}[V_T^*]$ above by $\mathbb{E}[R_T^*]$. "Solve" regret bound.

Consider i.i.d. losses $f_t \sim \mathbb{P}$ with **stochastic optimum**

$$u^* = \underset{u}{\operatorname{arg\,min}} \mathbb{E} f(u)$$

Goal is small **pseudo-regret** compared to u^* :

$$R_T^* = \sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u^*)$$

Corollary

For any
$$\beta$$
-Bernstein \mathbb{P} , MetaGrad keeps the exchinge \mathbb{P} ret below

$$\mathbb{E} R_T^* \leq O\left((d \ln T)^{\frac{1}{2-\beta}} \operatorname{holder}_{\text{hode}} \operatorname{hode}_{\text{loss}} \operatorname{hinge}_{\text{loss}} \operatorname{$$

Conclusion

First contact with a new generation of adaptive algorithms.

Conclusion

First contact with a new generation of adaptive algorithms.

MetaGrad adapts to a wide range of environments:

Conclusion

First contact with a new generation of adaptive algorithms.

