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Objective
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Loss Taxonomy ~ Curvature

Online Newton Step
[Hazan et al., 2007]
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Loss Taxonomy ~ Curvature

Online Newton Step
[Hazan et al., 2007]
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Can we make adaptive methods for online convex optimisation
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@ worst-case safe
@ exploit curvature automatically

@ computationally efficient

And can we adapt to other important regimes?
@ Mixed or in-between cases?
@ Stochastic data? Bandits [Seldin and Slivkins, 2014]

@ Absence of curvature? Experts [Koolen and Van Erven, 2015]
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For every optimisation algorithm tuning is crucial.
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So let's learn optimal tuning from data.
Key obstacle: avoid learning 1 at slow rate itself.

Breakthrough: Multiple Eta Gradient algorithm (MetaGrad)
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Second-order Regret Bound

Theorem
The regret of MetaGrad is bounded by

Ry = O(min{ﬁ, W})

where
—

Vr = Z((wt —u*)TVﬁ(wt))2

t=1
measures variance compared to the offline optimum
w* = argmin, 0., fi(u)

Note: Optimal tuning depends on unknown optimum w*.
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MetaGrad regret bound: V

R = O(\/W)

For a-exp-concave or a-strongly convex losses, MetaGrad
ensures

Rr = O(dInT)

without knowing c.

Same result for fixed f; = f (classical optimisation) even without
curvature via derivative condition.

Curvature implies Q(V7) cumulative slack between loss and its
tangent lower bound.
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