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This talk

I Online Convex Optimization

I Learning the Learning rate

I Second-order (variance) bounds (individual sequence)

I Fast rates without curvature
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Fundamental Learning Model: Online Convex Optimization

I In round t = 1, 2, . . .
I Learner predicts wt (from unit ball)

I Encounter convex loss function ft(u) : Rd → R

I Learner
I observes gradient gt := ∇ft(wt) (from unit ball)

I incurs loss ft(wt)

I The goal is to have small regret

Ru
T :=

T∑
t=1

ft(wt)︸ ︷︷ ︸
Learner

−
T∑
t=1

ft(u)︸ ︷︷ ︸
Point u

with respect to every point u.
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The Learner’s Perspective

Round 1: Learner plays w1 = 0
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The Learner’s Perspective

Round 1: Learner incurs f1(w1) and sees g1 = ∇f1(w1)

 0

 1

-1  0  1



The Learner’s Perspective

Round 2: Learner plays w1 = 1/4

 0

 1

-1  0  1



The Learner’s Perspective

Round 2: Learner incurs f2(w2) and sees g2 = ∇f2(w2)
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The Learner’s Perspective
. . .



The Learner’s Perspective

Evaluate Learner using regret: Ru
T =

∑T
t=1 (ft(wt)− ft(u))
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State of the Art

Online gradient descent

wt+1 = wt − ηgt

recall gt = ∇ft(wt)

OGD bound: After T rounds,

Ru
T ≤ O


√√√√ T∑

t=1

‖gt‖2

 for all u with ‖u‖ ≤ 1.
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Bounds Reveal Our Dearest Hopes

Always have worst-case guarantee

Ru
T ≤ O


√√√√ T∑

t=1

‖gt‖2

 ≤ O(
√
T ).

Yet bound says we might get lucky

For smooth functions ft with common optimum u∗, as wt → u∗,
we have gt → 0, and √√√√ T∑

t=1

‖gt‖2 �
√
T

grows much slower than
√
T .



What We Hope Happens

Ru
T ≤ O


√√√√ T∑

t=1
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Can We Do Better?

No in general: matching lower bound.

Ru
T ≥ Ω(

√
T )

Yes, with curvature:

Ru
T ≤ O(lnT )

I Strongly convex: I � ∇2f (u), e.g.

ft(u) = ‖u− yt‖2

⇒ gradient descent with small η

I Exp-concave: ∇f (u)∇f (u)ᵀ � ∇2f (u), e.g.

ft(u) = − ln (1 + yᵀ
t u)

⇒ Online Newton Step



Can We Do Better?

But do we really need curvature?

This talk: no, stability is enough.

New algorithm MetaGrad:
Separate learning rate η for each point u
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Refined Bound

Recall bound for gradient descent:

Ru
T ≤ O


√√√√ T∑

t=1

‖gt‖2


New bound for MetaGrad:

Ru
T ≤ O

(√
V u
T d lnT

)
where V u

T :=
T∑
t=1

(
(wt − u)ᵀgt

)2

Data-dependent. Whoa! Ouroboric.

Always improvement:(
(wt − u)ᵀgt

)2 ≤ ‖wt − u‖2‖gt‖2



Now What We Hope Happens

Ru
T ≤ O


√√√√ T∑

t=1

(
(wt − u)ᵀgt

)2



 0

 1

-1  1

 0

 1

-1  1



Outline

Online Convex Optimization

A New Type of Guarantee

Fast Rates

MetaGrad Algorithm



Does it Really Work?
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-1  1Offline optimization (fixed function):

ft(u) = |u − 1/4 |
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The “Fast Rates” Pipeline

Combine

I refined individual-sequence regret bound

Ru
T ≤

√
V u
T d lnT ∀u

I Special-purpose argument that for best u∗

V u∗
T ≤ Ru∗

T

I Profit!

Ru∗
T ≤

√
Ru∗
T d lnT so Ru∗

T ≤ d lnT



Significant Improvement: Fixed Function

Any fixed ft(u) = f (u).
Let u∗ = arg minu f (u) be the offline minimiser.

Crux: (wt − u∗)ᵀgt ∈ [0, 2].

Now from the regret bound

Ru∗
T ≤

T∑
t=1

(wt − u∗)ᵀgt ≤
√
V u∗
T d lnT

and special-purpose observation

V u∗
T =

∑T
t=1 ((u∗ −wt)

ᵀgt)
2 ≤ 2

∑T
t=1(wt − u∗)ᵀgt

we can solve for V u∗
T to find V u∗

T ≤ d lnT and hence

Ru∗
T ≤

√
2d lnT



Does It Really Actually Work?
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Stochastic optimization:

ft(u) = |u − xt |
where xt = ±1

2 i.i.d. with probability 0.4 and 0.6.
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What’s Going On, Really?

Stochastic optimization:

ft(u) = |u − xt |

where xt = ±1
2 i.i.d. with probability 0.4 and 0.6.
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Individual functions Long-term average

Stable minimum easy to converge to



Significant Improvement: Stochastic Case
Consider i.i.d.

f ∼ P with u∗ = arg min
u

E[f (u)]

Condition: there is a c > 0 such that

∀w : (w − u∗)ᵀ E [∇f (w)∇f (w)ᵀ] (w − u∗) ≤ c(w − u∗)ᵀ E [∇f (w)]

Now from the special-case condition

E[V u∗
T ] ≤ c E

[
T∑
t=1

(wt − u∗)ᵀ∇f (wt)

]
and by the generic regret bound, in expectation,

E[Ru∗
T ] ≤ E

[
T∑
t=1

(wt − u∗)ᵀ∇f (wt)

]
≤ E

[√
V u∗
T d lnT

]
and by Jensen’s inequality E

[√
V u∗
T

]
≤
√
E
[
V u∗
T

]
, so that

E[Ru∗
T ] ≤

√
cd lnT
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Our Approach in a Nutshell

1. Replace actual loss ft(u) by surrogate loss `ηt (u)
I parametrised by learning rate η
I exp-concave in u
I So can get good bound for surrogate regret

2. Exponentially spaced grid η1, η2, . . . , ηlog(T ) (ηi = 2−i ).

3. Off-the-shelf exp-concave Slave for grid point ηi predicts

w
ηi
1 ,w

ηi
2 , . . .

4. At each round t, Master aggregates w
η1
t ,w

η2
t , . . . into wt .



Surrogate Loss

Real loss
ft(u) ≤ ft(wt) + (u−wt)

ᵀgt

Surrogate loss

`ηt (u) := η(u−wt)
ᵀgt + (η(u−wt)

ᵀgt)
2

Exp-concave! In particular:

e−`
η
t (u) ≤ 1 + η(wt − u)ᵀgt .

Excellent bound O(lnT ) for wrong loss.



MetaGrad Slave

η-Slave (variant of Online Newton Step) predicts

wη
t+1 = wη

t − ηΣ
η
t+1gt

where the covariance matrix is given by

Ση
t+1 =

(
1

4
I + 2η2

t∑
s=1

gsg
ᵀ
s

)−1

η-Slave guarantees

T∑
t=1

(
`ηt (wη

t )− `ηt (u)
)
≤ 1

8
‖u‖2 +

1

2
ln det

(
I + 8η2

T∑
t=1

gtg
ᵀ
t

)
≤ O(d lnT ) ∀u



MetaGrad Master

Input: Grid points ηi = 2−i with weights πi = 1
i(i+1) .

Goal: aggregate w
η1
t ,w

η2
t , . . .

Idea: Potential

Φt :=
∑
i

πie
−

∑t
s=1 `

ηi
s (w

ηi
s ).

Two steps:

I Find predictions wt that ensure 1 ≥ Φ1 ≥ Φ2 ≥ . . .
I Derive regret bound from 1 ≥ ΦT .



MetaGrad Master, Potential Decreases

Tilted exponentially weighted average

wt+1 =

∑
i πie

−
∑t

s=1 `
ηi
s (w

ηi
s )ηiw

ηi
t+1∑

i πie
−

∑t
s=1 `

ηi
s (w

ηi
s )ηi

ensures potential shrinks:

Φt+1 − Φt =
∑
i

πie
−

∑t
s=1 `

ηi
s (w

ηi
s )
(
e−`

ηi
t+1(w

ηi
t+1) − 1

)
exp-con

≤
∑
i

πie
−

∑t
s=1 `

ηi
s (w

ηi
s )ηi (wt+1 −w

ηi
t+1)ᵀgt+1

weights
= 0

and hence Φt ≤ 1.



MetaGrad Master, Small Potential is Good

The Master achieves for all t:

1 ≥ Φt =
∑
i

πie
−

∑t
s=1 `

ηi
s (w

ηi
s ).

It follows that

T∑
t=1

(
0− `ηit (w

ηi
t )
)
≤ − lnπi ∀i in grid

(Master has zero surrogate loss)



MetaGrad Analysis

Now combine the Master and Slave guarantee.
For each grid point η and comparator u

T∑
t=1

(0− `ηt (wη
t )) ≤ − lnπi ≤ ln lnT

T∑
t=1

(
`ηt (wη

t )− `ηt (u)
)
≤ O(d lnT )

so

T∑
t=1

(0− `ηt (u)) ≤ O(d lnT ).

Unpacking `ηt (u) = η(u−wt)
ᵀgt + (η(u−wt)

ᵀgt)
2 yields

ηRu
T ≤ η2V u

T + O(d lnT ).



MetaGrad Analysis (ctd.)

Reorganise the bound to:

Ru
T ≤ ηV u

T +
O(d lnT )

η

Now pick the best grid point

η̂ =

√
O(d lnT )

V u
T

to find
Ru
T ≤ O

(√
V u
T d lnT

)
of course we need a grid point close to η̂ and we need to deal with off-grid η̂ � 1 and η̂ � 1√

T
.



MetaGrad Outlook

I Run-time O(d2) per round

I Projections (avoid O(d3) per round!)
I We design and analyze two versions of Slave

I Full covariance (quadratic)
I Diagonal approximation (linear)

I Very welcome to discuss further

Learn more:

I Paper submitted to COLT 2016, preprint available

I Code is available

http://bitbucket.org/wmkoolen/metagrad

I Experiments coming soon.

http://blog.wouterkoolen.info

http://bitbucket.org/wmkoolen/metagrad
http://blog.wouterkoolen.info
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Summary

Low regret through stability, even without curvature.

I New MetaGrad algorithm.

I Hierarchical Master-Slave construction.

I Learns the learning rate.

I Refined (adaptive) regret bound.

I Stochastic condition for logarithmic regret (fast rates)



Thank you!
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