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Online Convex Optimization



Fundamental Learning Model: Online Convex Optimization

» Inround t=1,2,...

> Learner predicts w; (from unit ball)
» Encounter convex loss function f;(u) : R — R

94y
» Learner

> observes gradient g: := Vfi(w:) (from unit ball)
> incurs loss fy(w:)



Fundamental Learning Model: Online Convex Optimization

» Inround t =1,2,...

> Learner predicts w; (from unit ball)
» Encounter convex loss function f;(u) : R — R

—

14
» Learner

> observes gradient g: := Vfi(w:) (from unit ball)
> incurs loss fy(w:)

> The goal is to have small regret

T T
RY = > filwd) =Y filw)
t=1 t=1

—_———— ——

Learner Point u

with respect to every point u.



The Learner’s Perspective

Round 1: Learner plays w; =0

1



The Learner’s Perspective

Round 1: Learner incurs fi(wi) and sees g1 = Vfi(w1)

1



The Learner’s Perspective

Round 2: Learner plays wy = 1/4

T
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The Learner’s Perspective

Round 2: Learner incurs f(wz) and sees go = Vi (wz)

1



The Learner’'s Perspective



The Learner’s Perspective
Evaluate Learner using regret: RY = Zthl (fe(wy) — fe(w))

1



State of the Art

Online gradient descent

Wi41 = Wt — NGt

recall g = Vfi(wy)



State of the Art N

Online gradient descent
Wil = Wy — NGt
recall g = Vfi(wy)

OGD bound: After T rounds,

-
Ry <O ( th2) for all w with [ju| < 1.
t=1



Bounds Reveal Our Dearest Hopes N

Always have worst-case guarantee j

Yet bound says we might get lucky

For smooth functions f; with common optimum u*, as w; — u*,
we have g; — 0, and

-
> llgel® < VT
t=1

grows much slower than /' T.



What We Hope Happens




Can We Do Better? _@i
No in general: matching lower bound. @
RY > Q(WT)

Yes, with curvature:
RY < O(InT)
» Strongly convex: I < V2f(u), e.g.

fi(u) = |lu—ye|

= gradient descent with small 7
» Exp-concave: Vf(u)Vf(u)T < V2f(u), e.g.

fe(u) = —In(1+yiu)

= Online Newton Step



Can We Do Better?

But do we really need curvature?
This talk: no, stability is enough.

New algorithm MetaGrad:
Separate learning rate 7 for each point u

)

B,
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A New Type of Guarantee



Refined Bound

|
Recall bound for gradient descent: \

New bound for MetaGrad:

-
Rt < O(W) where V7 = Z((wt—u)Tgt)z

Data-dependent. Whoa! Ouroboric.
Always improvement:

2 2y, 112
((we —u)Tge)” < [Jwe —u|”|g:l



Now What We Hope Happens

!

T

t=1

> ((we = u)ige)’

1

|
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Fast Rates



Does it Really Work?

Offline optimization (fixed function):

regret

60

50

40

fi(u) = lu—1/4)

——GD (n=1)
GD (n=1A'T)
——— GD (n=1/T)

— AdaGrad /

MetaGrad
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The “Fast Rates” Pipeline

Combine

» refined individual-sequence regret bound

RE < \/VEdInT Vu

» Special-purpose argument that for best u*

RY < /R¥dInT  so ¥ < dinT

> Profit!



Significant Improvement: Fixed Function

Any fixed fi(u) = f(u).
Let u* = argmin,, f(u) be the offline minimiser.

Crux: (wy —u*)Tg; € [0, 2].

Now from the regret bound

-
RY < Z(wt —u")Tgy < \/VEdInT
t=1

and special-purpose observation

Ve = S ((wf —we)Tge)? < 23] (we —u¥)Tg,

we can solve for V}‘* to find V}‘* < dIn T and hence

RY < V2dInT



Does It Really Actually Work?

Stochastic optimization:

where x; = :l:%

regret

fi(u) = |u—x|
i.i.d. with probability 0.4 and 0.6.

7

——GD (n=1)

60

GD (n=1N'T)
50 —— GD (n=1/T)
— AdaGrad
40

MetaGrad Nw
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What's Going On, Really?

Stochastic optimization:
fr(u) = |u—xi

where x; = :l:% i.i.d. with probability 0.4 and 0.6.

05 F

-1 1 -1

Individual functions Long-term average

Stable minimum easy to converge to



Significant Improvement: Stochastic Case
Consider i.i.d.

f ~P with u* = argminE[f(u)]
u

Condition: there is a ¢ > 0 such that
Vw : (w —u*)TE [Vi(w)Vi(w)T](w —u*) < c(w—u*)TE[Vi(w)]

Now from the special-case condition
T

> (we - u*)TVf(wt)]

t=1

E[V¥] < cE

and by the generic regret bound, in expectation,

-
Z u*)TVf(w,)| <E {\/vu dln T]
and by Jensen's inequality E [1/ w | <L\/E V“ , SO that

E[R}] < Ved

E[RY
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MetaGrad Algorithm



Our Approach in a Nutshell .-._\

—

. Replace actual loss f;(u) by surrogate loss /{(u)
> parametrised by learning rate 7
> exp-concave in u
» So can get good bound for surrogate regret

N

. Exponentially spaced grid 7,75, - - -, iog(1) (i = 21,
3. Off-the-shelf exp-concave Slave for grid point 7); predicts

n;i n;
wlj’,wzj’,...

4. At each round t, Master aggregates w,', w;?, ... into w;.



Surrogate Loss @
)

Real loss

fl(u) < fr(we) + (v —wt)7ge

Surrogate loss
G(u) = n(u—we)Tge + (n(u — we)Tge)*
Exp-concave! In particular:
e W < 14 (we —u)Tg:.

Excellent bound O(In T) for wrong loss.



MetaGrad Slave

n-Slave (variant of Online Newton Step) predicts

N n
Wy = wp — N2 40;

where the covariance matrix is given by

¢ -1
, 1
X, = <4I + 21° Z gsg;>

s=1
n-Slave guarantees

T

.
1 1
> (G w]) ~ t{(w)) < gllul® + 5 Indet (I +8n229t91>

t=1 t=1

IN

O(dInT) VYu



MetaGrad Master 7 @

Input: Grid points 7; = 27/ with weights ; = ﬁ

Goal: aggregate w,*, w;?, ...

Idea: Potential
¢, = Zﬂ'ie_ Y b7 (wd),
i
Two steps:

» Find predictions w; that ensure 1 > ®; > &, > ...
» Derive regret bound from 1 > &,



MetaGrad Master, Potential Decreases @

Tilted exponentially weighted average

i, MNi .
Z T e Zs lé (w )77iw:_~7-'|-1
i i
> e T Gy,

Wey1 =

ensures potential shrinks:

iy — P, = Zﬂ,’e* iy e (wlh) < e (wily) 1)
i
exp-con t n; 7] ,
— _ ZS' ! ni welghts

and hence ¢; < 1.



MetaGrad Master, Small Potential is Good @

The Master achieves for all t:
7], 7],-
= me Tt

It follows that
Z (0—¢{(w{) < —Inm Vi in grid
t=1

(Master has zero surrogate loss)



MetaGrad Analysis .-._\

Now combine the Master and Slave guarantee.
For each grid point 1 and comparator u

.
> (0—f(w!) < —Inm < IninT

t=1

;
> (G (w!) — {(uw)) < O(dInT)

t=1

so
-
> (0-¢{(uw) < O(dInT).
t=1
Unpacking #{(u) = n(u — w¢)Tg: + (n(w — wt)Tgt)2 yields
nR% < n*VE 4+ 0(dInT).



MetaGrad Analysis (ctd.)

Reorganise the bound to:

InT
R} < nVF#+ OldinT)
Now pick the best grid point
. O(dInT)
n = 7\/%

to find

Rt < O(\/vedinT)

of course we need a grid point close to 7) and we need to deal with off-grid 7} > 1 and 7} <K %

<



MetaGrad Outlook .-._\

v

Run-time O(d?) per round
Projections (avoid O(d®) per round!)
We design and analyze two versions of Slave

» Full covariance (quadratic)
» Diagonal approximation (linear)

v

v

v

Very welcome to discuss further


http://bitbucket.org/wmkoolen/metagrad
http://blog.wouterkoolen.info

MetaGrad Outlook .-._\

» Run-time O(d?) per round

» Projections (avoid O(d3) per round!)
» We design and analyze two versions of Slave

» Full covariance (quadratic)
» Diagonal approximation (linear)

» Very welcome to discuss further

Learn more:
» Paper submitted to COLT 2016, preprint available

» Code is available

@ http://bitbucket.org/wmkoolen/metagrad

» Experiments coming soon.

! http://blog.wouterkoolen.info


http://bitbucket.org/wmkoolen/metagrad
http://blog.wouterkoolen.info

Summary ‘..\

Low regret through stability, even without curvature.

» New MetaGrad algorithm.

Hierarchical Master-Slave construction.

v

v

Learns the learning rate.

v

Refined (adaptive) regret bound.

v

Stochastic condition for logarithmic regret (fast rates)



Thank you!
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