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Online Learning Algorithms




regret

Learning as a Game

worst-case safe algorithm

V\/\/\/\/

problem instances

high (bad)

minimax

0 (perfect)



regret

Practice is not Adversarial
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Fundamental model for learning: Hedge setting
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» K experts

(o) @
= T\

» Inround t =1,2,...

» Learner plays distribution w; = (w}, ..., w/) on experts
» Adversary reveals expert losses £, = (¢1,...,¢K) €0, 1]¥
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» Learner incurs loss w] £;
» Evaluation criterion is the regret:
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Canonical algorithm for the Hedge setting

Hedge algorithm with learning rate 7:
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The tuning 7 = pWorst case .— % results in

Ry < /T/2InK

and we have matching lower bounds.
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and we have matching lower bounds.

Case closed?



Gap between Theory and Practice

worst case

~ Practitioners report that tuning > n works much

better. [DGGS13]



Theory and Practice getting closer
N

worst case

= Practitioners report that tuning 1 > 7 works much

better. [DGGS13]

Series of worst-case data-dependent improvements

R+ < \/T/QInK T )Lﬂ:r > Vr > AT




Theory and Practice getting closer

C

- Practitioners report that tuning 7 >> 7't €€ works much
better. [DGGS13]

Series of worst-case data-dependent improvements

R+ < \/T/2|nK T )Lﬂ:r > Vr > AT

and extension to scenarios where Follow-the-Leader (1 = o0)
shines (11D losses)

RT S min {Rv_;/_orstcasejR%_o}



Theory and Practice getting closer

C

- Practitioners report that tuning 7 >> 7't €€ works much
better. [DGGS13]

Series of worst-case data-dependent improvements

R+ < \/T/2|nK T )Lﬂ:r > Vr > AT

and extension to scenarios where Follow-the-Leader (1 = o0)
shines (11D losses)

RT S min {Rv_;/_orstcasejR%_o}

Case closed?



Menu

Grand goal: be almost as good as best learning rate 7

Rt =~ minRT.
n

» Example problematic data

> Key ideas
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LLR algorithm in a nutshell

LLR
» maintains a finite grid 7!, ..., nm p2h
» cycles over the grid. For each 7':
» Play the 7' Hedge weights
» Evaluate 1’ by its mixability gap
» Until its budget doubled

> adds next lower grid point on demand



LLR algorithm in a nutshell

LLR
» maintains a finite grid 7!, ..., nm p2h
» cycles over the grid. For each 7':
» Play the 7' Hedge weights
» Evaluate 1’ by its mixability gap
» Until its budget doubled

> adds next lower grid point on demand

Resources:
» Time: O(K) per round (same as Hedge).
» Memory: O(In T) — O(1).
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Unavoidable notation

hy = wlk, (Hedge loss)
—]_ k — Zk .

me = —In) wie T, (Mix loss)

0y = hy — my. (Mixability gap)

And capitals denote cumulatives

T
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t=1



Key ldea 1: Monotone regret lower bound

Problem: Regret R’ is not increasing with T.

But we have a monotone lower bound:

n 7
Rt = A7

Proof:
R! = Hr— L% = Hr— My + Mr—L%
mixability gap  mix loss regret
Now use
—1 ]. 7 Lk % In K
MT = 7'“ (;KG ! T> S LT+ |:077]:|

Upshot: measure quality of each 1 using cumulative mixability gap.



Key ldea 2: Grid of n suffices

For v > 1:
5;,7/ < 76(7_1)(|n K+n)5'£l

l.e. d; cannot be much better than §;".

Exponentially spaced grid of 7 suffices.



Key Idea 3: Lowest 7 is

AdaHedge:
ah In K

e = Aah1
t

Result:

Imax

“AdaHedge"

Rr < Y AL+ cAY
i=1



Key ldea 4: Budgeted timesharing

Active grid points

imax ah
77 ) 77 ) ctty 77 ) 77t

7_‘_1’ 7_‘_2, . ﬂ_lmax’ 7_‘_ah
LLR maintains invariant:
1 2 fmax ah
At ~ AT ~ ~ At ~ AT
7l 2 rimax qrah
. L . c Al
Run each 7; in turn until its cumulative mixability gap —F doubled.
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Putting it all together

Two bounds:
_[InKin %R”T for all € [2h, 1]
Rr < O
R
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Run on synthetic data (T =2 -107)
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Conclusion

» Higher learning rates often achieve lower regret

» In practice
» Constructed data

» Learning the Learning Rate (LLR) algorithm
» Performance close to best learning rate in hindsight
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» Learning the Learning Rate (LLR) algorithm
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Open problems:

» LLR as PoC
Can we do it simpler, prettier, smoother and tighter?



Thank you!
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