Combining Adversarial Guarantees and
Stochastic Fast Rates in Online Learning

Wouter M. Koolen Peter Grinwald Tim van Erven

E Centrum Wiskunde & Informatica

MIT, Thursday 30™ June, 2016

Universiteit Leiden



Online Learning Challenges Everywhere

I

'@%h& ;'QZL!]@‘U

sebF amazoncom




Easy Data

We desire to make efficient online learning algorithms that adapt
automatically to the complexity of the environment.

» Worst-case rates in adversarial environments (safe and robust)

» Fast rates in favorable stochastic environments (practice)
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We desire to make efficient online learning algorithms that adapt
automatically to the complexity of the environment.
» Worst-case rates in adversarial environments (safe and robust)

» Fast rates in favorable stochastic environments (practice)

This talk

» Review second-order individual sequence bounds
(Squint, MetaGrad)

» Review stochastic luckiness criteria
(Gap, Tsybakov, Massart, Bernstein)

» Result: second-order algorithms exploit stochastic luckiness
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» K experts
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» The goal is to have small regret
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with respect to every expert k.



Classical Result

i

The Hedge algorithm with learning rate 7

e_77L,1f t
k o k __ E k
Wt+1 = m where Lt = 65,
k s=1

upon proper tuning of 1) ensures [Freund and Schapire, 1997]
R < VTIhK for each expert k

which is tight for adversarial (worst-case) losses.
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Squint [Koolen and Van Erven, 2015] 7/ @

Notation For each expert k:

rk = wil, — (& Instantaneous regret
R = ZLI rk Cumulative regret
vk = ZtT:l(r,_f‘)2 Uncentered variance of the excess loss

Fix prior m on experts. After T > 0 rounds, Squint plays
k 1/2 k 2\ /k
WTip X 7T(k)/ exp (nRT—n Vr) dn
0

Constant time per expert per round.

Squint ensures

R% < \/va(— Inm(k) +InlnT)  for each expert k.

Beats worst-case regret when VX = o(v/T).



Fundamental Learning Model: Online Convex Optimization
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> Learner predicts w; (from unit ball)
» Encounter convex loss function f;(u) : R — R
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> observes gradient g: := Vfi(w:) (from unit ball)
> incurs loss fy(w:)



Fundamental Learning Model: Online Convex Optimization

» Inround t =1,2,...

> Learner predicts w; (from unit ball)
» Encounter convex loss function f;(u) : R — R

—

14
» Learner

> observes gradient g: := Vfi(w:) (from unit ball)
> incurs loss fy(w:)

> The goal is to have small regret

T T
RY = Y fi(w) =Y hlu)
t=1 t=1
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Learner Point u

with respect to every point u.
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Classical Result

Online gradient descent with learning rate 1 [Zinkevich, 2003]
Wi+1 = Wt — NGt
recall g = Vfi(wy).

After T rounds, properly tuned OGD guarantees

= O(VT)  forall wwith |Ju| <1,

which is tight for adversarial losses.



MetaGrad [Koolen and Van Erven, 2016]

=

MetaGrad learns the learning rate 1 by aggregating In T instances
of Online Newton Step.

MetaGrad guarantees:

T

Ry < O<\/W) where V3 = Z((wt—U)TQt)2

t=1
Run-time O(d?In T) per round. (Sketching, diagonal version, ...)

Improves OGD, for by Cauchy-Schwarz:

2 20 112
((we —u)Tge)” < [Jwe —ul”llgel



Recap

We saw two algorithms with bounds of the form

RE < \/VEKEK
RY < (/VYKY

But when/how can we guarantee that either V1 is small?

and



First step

Experts with gap. There are k* and a > 0 such that Vk # k*
o < E |k ]
[Gaillard et al., 2014] show that any algorithm with second-order

bound
RE < VKKK,

satisfies E[R5] = O(1).



Inspiration: Tsybakov margin condition for classification

Classification: Y € {0, 1}.

P(|P(Y:1\X)—1/2\ gt) < ot®

—~ 1 1 1
<
i
|| 0.5 0.5 0.5
>
— 0 0 0
[ X X X
easy moderate hard
a =0 a=1 a=0

Confusing case: predictors with equal risk but opposite
predictions.



Stochastic Luckiness Conditions

IID versions
» Massart condition, For B > 0 and Vk:

E [(ek —5”)2] < BE [zk —ﬁk*}
» Bernstein condition. For B > 0, 3 € [0, 1] and Vk:

E [(%—Wﬂ < BE [zk—ek*}ﬁ



Fast Rates using Massart
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Fast Rates using Massart

Applying the individual-sequence bound to k* gives, in expectation,

E[R"T*} < E
Then
.
E|VE] = Y E
t=1

\/W] Jegen E[VkT] K

2
(z et eﬁ*)

k

e zT:EZ WrE [(ﬂ’; - z’;*)z]

Massart

ZEZWt"BE[f" #] = BE[RY]

and so E[RY] < /BE[RX K", hence E[RY ] < BKK = O(1).
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Bernstein for OCO

For experts we looked at

* * B
E [(E" L )2} < BE [ek L } V.
For stochastic OCO (with f ~ P) we ask

E [<w — Vf(w)ﬂ < BE[(w —u", Vf(w))]® va.



Examples where Bernstein applies, 1/2

» Unregularized hinge loss on unit ball.
» Data (@, y:) ~Piid.
Hinge loss f;(u) = max{0,1 — y;x]u}.
Mean p = E[yx] and second moment D = E[zxT].

Bernstein with 3 =1 and B = 2)‘T|‘Z(”D)

v

v

v




Examples where Bernstein applies, 2/2

» Absolute loss:
fe(u) = |u— x|

where x; = :l:% i.i.d. with probability 0.4 and 0.6.

0.5

0

4 1 -1 1
Individual functions  Long-term average

Bernstein with 8 =1 and B = 5.



Main result

Theorem
In any stochastic setting satisfying the (B, [3)-Bernstein Condition,
the guarantees for Squint and for MetaGrad

RS < /V%KS foralldc©

imply fast rates for the respective algorithms both in expectation
and with high probability. That is,

o P R e
E[rRT] = O K-,- P T>s )
and for any § > 0, with probability at least 1 — 9§,

RY = O((Kr—In&)7s T%> .



High probability, sketch 1/4

Fix x € [~1,1] and 6 € ©. Bernstein
g
E [(x‘))ﬂ < BE [x"] forall 6 € ©
implies the Central condition [Van Erven et al., 2015]

1 1
“IhE [e*"X"} < O(77) forall >0
n




High probability, sketch 2/4

We show

Lok [e‘”’(q < O(y77) forally >0
n

implies (for c ~ 3)

< O(nﬁ) foralln >0

LI {ecnz(xe)Q—nxe}
p <
Telescope to

Lok [eZL1Cﬂ2(X")Z—nxg] < O(Ty™73) forally>0

n -



High probability, sketch 3/4 \l Y

Combining / \

1 1
fInE[eC”Z‘/?'*"RGT} < O(Ty™F) forall >0
n

with the individual sequence regret bound

K
RY < 24/VIKY = inf{nv$+7}
7 n

so that
772 0 0
2nRY < - V7 +8KT

gives (using ¢ ~ 1/2)

1 1
—InE [e"qu*SKﬂ < O( T'r]lflﬁ) foralln >0
n



High probability, sketch 4 /4

By Markov

1 1
—InE [eanf_SKﬂ < O( Tnl—lﬂ) forall n >0
n

implies with high probability

nRQ,— < 8K$——|— Tnﬁ

)

and optimally tuning 7 results in

Tb

R% < O<K2BT




Conclusion

We showed that Squint and MetaGrad (online learning algorithms
with second-order bounds) adapt to Bernstein stochastic luckiness.

The results extend

» Non-iid. Only need the Bernstein condition conditionally.
There are k*, B > 0 and § € [0, 1] such that

E[(zf—fﬁ*)z‘past} < BE[E’;-@F pastf Vkvt.

E.g. algorithmic information theory setting.



Thank you!



