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Motivation

I Interested in foundations of OLDM.

I Learning formulated as sequential game of regret
minimisation.

I Minimax optimal strategy
I known in a few cases (NML, GDE, L∗-experts, ...)
I tractable in even fewer

I We stumbled across two natural games with efficient minimax
solutions.

I So efficient that we dared to submit to LSOLDM.
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Section 1

Brier game
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Brier loss

Brier loss equals squared Euclidean distance between a,x ∈ 4:

‖a− x‖2 = (a− x)ᵀ(a− x)

Square loss is proper, convex, and bounded.



Objective: close to best prediction

Learner a1 a2 . . . aT

Nature x1 x2 . . . xT

Regret :=
T∑
t=1

‖at − xt‖2 −min
a

T∑
t=1

‖a− xt‖2



Minimax regret

Problem:

min
a1

max
x1

. . .min
aT

max
xT

(
T∑
t=1

‖at − xt‖2 −min
a

T∑
t=1

‖a− xt‖2
)

Game-theoretic analysis gives us:

I Minimax strategy at

I Maximin strategy xt

I Value of the game (minimax regret).
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Recurrence

Value-to-go:

V (x1, . . . ,xT ) := −min
a

T∑
t=1

‖a− xt‖2

V (x1, . . . ,xt−1) := min
at

max
xt

(
‖at − xt‖2 + V (x1, . . . ,xt)

)
The minimax regret equals value-to-go V (ε) from empty history.

Our approach: manual backwards induction . . .



Crux

For each 0 ≤ t ≤ T the value-to-go

V (x1, . . . ,xt)

is quadratic function of simple statistics

t∑
s=1

xs and
t∑

s=1

xᵀ
sxs .

Idea: proof by induction. Base case t = T is easy. Induction step
hinges on single-round min-max solution.



Consequences I

In the state (x1, . . . ,xn) with statistics s =
∑n

t=1 xt and
σ2 =

∑n
t=1 x

ᵀ
txt the Brier game on 4d has value-to-go

V (s, σ2) = αns
ᵀs− σ2 + constn

and minimax and maximin strategies given by

a∗(s, σ2) = p∗(s, σ2) =
1

d
+ αn+1

(
s− n

1

d

)
with coefficients defined recursively by

αT =
1

T
αn−1 = α2

n + αn.



Consequences II
I Minimax shrinks Follow-the-Leader towards uniform:
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I Computation: O(T ) pre-processing, then O(d) per round.
I The regret is at most

1 + ln(T ).

I Mixed data points are friendly.



Extension: Mahalanobis loss

Gravity of errors differs among dimensions.

Technical tool: generalise squared Euclidean distance

‖a− x‖2 = (a− x)ᵀ(a− x)

to squared Mahalanobis distance (proper!)

‖a− x‖2W = (a− x)ᵀW−1(a− x)

for some fixed coefficient matrix W � 0.

All results scale up (under simplex alignment condition on W ).
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Minimax regret

Problem:

min
a1

max
x1

. . .min
aT

max
xT

(
T∑
t=1

‖at − xt‖2W −min
a

T∑
t=1

‖a− xt‖2W

)

Note: Brier and Ball game only differ in domain of at and xt



Minimax analysis
Consider the ball game with loss ‖a− x‖2W . The value-to-go for
state (x1, . . . ,xn) with statistics s =

∑n
t=1 xt and

σ2 =
∑n

t=1 x
ᵀ
tW

−1xt is

V (s, σ2) = sᵀAns− σ2 + constn.

The minimax strategy plays

a∗(s, σ2) =
(
W−1 + λmaxI −An+1

)−1
An+1s

and the maximin strategy plays two unit length vectors with

Pr

(
x = a⊥ ±

√
1− aᵀ

⊥a⊥vmax

)
=

1

2
± 1

2

√
aᵀ
‖a‖

1− aᵀ
⊥a⊥

,

where λmax and vmax correspond to the largest eigenvalue of An+1

and a⊥ and a‖ are the components of a∗ perpendicular and
parallel to vmax. The coefficients An are determined recursively by
base case AT = 1

TW−1 and recursion

An−1 = An

(
W−1 + λmaxI −An

)−1
An + An.



The eigenvalue warp
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(
W−1 + λmaxI −An+1

)−1
An+1

Brier game had uniform shrinkage.
For ball game shrinkage rate depends on dimension.



Ball game consequences

I Regret bounded by λmax(W−1)
(
1 + ln(T )

)
.

I Computation: O(Td + d3) pre-processing, O(d2) per round.

I Outcomes in ball interior are friendly.



Section 3

Diamond game



Counterexample: diamond game

W = I case (accidentally?) works out; value-to-go is quadratic.
W 6= I case fails. Complexity of value-to-go function explodes.



Section 4

Conclusion



Conclusion

I Two games where the minimax strategy can be followed in
amortised constant computation per round.

I Value-to-go quadratic function of statistic

I Minimax strategy linear in statistic
( Follow-the-Leader with subtle shrinkage)



What next

I Characterise interplay of action/outcome sets and loss that
results in simple value-to-go function (conjugacy)

I Reduce other similar losses to square loss

I Consider other notions of ”squared distance”. (Bregman)

I Add covariates (regression)

I Consider non-stationarity

I Other losses (PCA, @#$! hard)

I Horizon-free/anytime algorithms



Thank you!
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