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Motivation

> Interested in foundations of OLDM.

» Learning formulated as sequential game of regret O
minimisation.

» Minimax optimal strategy

» known in a few cases (NML, GDE, L*-experts, ...)
» tractable in even fewer



Motivation

Interested in foundations of OLDM.
Learning formulated as sequential game of regret O
minimisation.
Minimax optimal strategy

» known in a few cases (NML, GDE, L*-experts, ...)

> tractable in even fewer
We stumbled across two natural games with efficient minimax
solutions.

So efficient that we dared to submit to LSOLDM.
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Brier game



Brier game: weather prediction example
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Brier loss

Brier loss equals squared Euclidean distance between a,x € A:

la—z|* = (a —2)7(a~z)

Square loss is proper, convex, and bounded.



Objective: close to best prediction
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Problem:
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Game-theoretic analysis gives us:
» Minimax strategy a;
» Maximin strategy x;

» Value of the game (minimax regret).



Recurrence

Value-to-go:
T
V(zs,....zr) = —min la— el
t=1
V(x1,...,2¢1) = minmax (Hat —ze|? + V(z1,. .. ,mt)>
at Tt

The minimax regret equals value-to-go V/(€) from empty history.

Our approach: manual backwards induction ...



Crux

For each 0 < t < T the value-to-go
V(iL']_, v 7wf)

is quadratic function of simple statistics

Idea: proof by induction. Base case t = T is easy. Induction step
hinges on single-round min-max solution.



Consequences |

In the state (z1,...,x,) with statistics s = Y _7_; @ and
0% = >r_; ]z, the Brier game on Ay has value-to-go

V(s,0%) = apsTs — o+ const,
and minimax and maximin strategies given by

1 1
a'(s,0) = P'(5,0) = &+ an (s—nd)

with coefficients defined recursively by

2
ar = Op_1 = Q,+ Qp.

1
=



Consequences I

» Minimax shrinks Follow-the-Leader towards uniform:
1
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» Computation: O(T) pre-processing, then O(d) per round.
» The regret is at most

1+ In(T).

» Mixed data points are friendly.



Extension: Mahalanobis loss

Gravity of errors differs among dimensions.
Technical tool: generalise squared Euclidean distance
la—z|* = (a—2)"(a—2)
to squared Mahalanobis distance (proper!)
la -2zl = (a—2)"W(a-2)

for some fixed coefficient matrix W = 0.

All results scale up (under simplex alignment condition on W).
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Ball game

Best in hindsight



Minimax regret

Problem:
T T
. . _ 2 . Z B 2
min max.... min max (;Hat |5 min t_lHa mt||W>

Note: Brier and Ball game only differ in domain of a; and x;



Minimax analysis
Consider the ball game with loss ||a — ||;,. The value-to-go for

state (x1,...,x,) with statistics s =) | ; ; and
o2 =31 zIW ™z, is
V(s,0?) = sTAps — o? + const,.

The minimax strategy plays
_ -1
a*(s,a2) = (W L Anax] — A,,+1) Api1s

and the maximin strategy plays two unit length vectors with

T
/ 1 1/ &9
Pr <$ =a] + 1-— alaJ_’UmaX> = E + 5 m,

where Amax and vmax correspond to the largest eigenvalue of A1
and a  and a are the components of a* perpendicular and
parallel to vmax. The coefficients A, are determined recursively by
base case A1 = %W‘l and recursion

Anfl = An (W_l + >\maxI - An)_l An + An-



The eigenvalue warp

eigenvalues of (W_l + Amax] — A,,H)*l A
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Brier game had uniform shrinkage.
For ball game shrinkage rate depends on dimension.



Ball game consequences

> Regret bounded by Amax(WW ~1)(1+ In(T)).
» Computation: O(Td + d3) pre-processing, O(d?) per round.

» Qutcomes in ball interior are friendly.



Section 3

Diamond game



Counterexample: diamond game

W =TI case (accidentally?) works out; value-to-go is quadratic.
W # I case fails. Complexity of value-to-go function explodes.
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Conclusion



Conclusion

» Two games where the minimax strategy can be followed in
amortised constant computation per round.

» Value-to-go quadratic function of statistic

> Minimax strategy linear in statistic
( Follow-the-Leader with subtle shrinkage)



What next

Characterise interplay of action/outcome sets and loss that
results in simple value-to-go function (conjugacy)

Reduce other similar losses to square loss

Consider other notions of "squared distance”. (Bregman)
Add covariates (regression)

Consider non-stationarity

Other losses (PCA, @#$! hard)

Horizon-free/anytime algorithms



Thank you!
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