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Part I

How can A/B tests be used for iterative

product refinement?



Model of the Status Quo



A question arises

Better to switch from current system to new version ?



Let’s find out (in production)!
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%

1%

Sufficient interactions pass . . . . . . Decide to switch or not.



Let’s find out (in production)!

99
%

1%

Sufficient interactions pass . . .

. . . Decide to switch or not.



Let’s find out (in production)!

99
%

1%

Sufficient interactions pass . . . . . . Decide to switch or not.



More questions emerge (sneak peek)

Better to switch from current system to new version or or ?



Let’s find out in production (sneak peek)

Testing

System

99
%

1%



Testing One Version



Setup

Current baseline performance is γ.

If we expose a stream of users to our new design, we generate a stream of rewards X1,X2, . . ..

Rewards modelled as independent and identically distributed X ∼ P.

We want to know if E[X ] > γ.

Say we take T samples and compute the empirical mean µ̂T = 1
T

∑T
t=1 Xt .

Roughly,

if µ̂T ≫ γ adopt new version

if µ̂T ≪ γ discard new version

if µ̂T ≈ γ vacillate?
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Workhorse: Concentration Inequality

Consider T samples X1,X2, . . . ,XT drawn i.i.d. from a probability distribution with mean

µ = E[X ]. Let µ̂T = 1
T

∑T
t=1 Xt be the empirical mean.

Concentration Inequality

Relates sample size T , deviation ϵ and confidence δ ensuring

P {µ̂T − µ ≥ ϵ} ≤ δ.

Hoeffding (bounded samples) or Chernoff (sub-Gaussian samples) give

Confidence width For fixed T , δ, get ϵ =

√
ln 1

δ

T

Exponential error decay For fixed ϵ,T , get δ = e−Tϵ2

Sample complexity For fixed ϵ, δ, get T =
ln 1

δ

ϵ2 .
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Making it precise

Current baseline performance is γ (known).

The new version has quality µ = E[X ] (unknown).

Let’s fix δ, ϵ ∈ (0, 1), take T = ln δ
ϵ2 samples, and accept the new version if µ̂T ≥ γ.

Then

• If µ ≥ γ + ϵ, we accept with probability ≥ 1− δ.

• If µ ≤ γ − ϵ, we accept with probability ≤ δ.

• If µ ∈ γ ± ϵ either can happen.



Making it precise

Current baseline performance is γ (known).

The new version has quality µ = E[X ] (unknown).

Let’s fix δ, ϵ ∈ (0, 1), take T = ln δ
ϵ2 samples, and accept the new version if µ̂T ≥ γ.

Then

• If µ ≥ γ + ϵ, we accept with probability ≥ 1− δ.

• If µ ≤ γ − ϵ, we accept with probability ≤ δ.

• If µ ∈ γ ± ϵ either can happen.



About setting the confidence δ

Suppose we run an algorithm that makes a mistake with probability ≤ δ.

If the algorithm is correct, our gain is G . But upon a mistake, the cost is C .

Then our expected profit is (at least)

(1− δ)G − δC

This is positive if

δ ≤ G

G + C

This is at least 95% of the possible gain G if

δ ≤ 0.05
G

G + C
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Summary so far

We can test one version with error guarantees.

Fact

Detecting any difference (“effect”) of size ϵ at confidence δ takes T =
ln 1

δ

ϵ2 samples.

Pro:

• Simple

• Practical

• Reliable

• Known, fixed cost

Con:

• Need to have an idea about effect size ϵ

• Not adaptive: sample size is T even if µ ≫ γ + ϵ

• Only one version under test



Spicing It Up



Anytime Confidence Intervals

Upgrade from a fixed sample size T to an assessment at every sample t = 1, 2, 3, . . .

Fix confidence δ ∈ (0, 1). We saw that for every fixed sample size T :

P

µ̂T − µ ≥

√
ln 1

δ

T

 ≤ δ.

It is not true that

P

∃t : µ̂t − µ ≥

√
ln 1

δ

t

 ≤ δ.

But almost!

Prototypical Anytime Concentration Inequality

P

∃t : µ̂t − µ ≥

√
ln 1

δ + O(ln ln t)

t

 ≤ δ.
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Anytime Upshot

Fact

Detecting an effect of size ϵ at confidence δ takes, on average, samples

ln 1
δ

ϵ2
+ small



Taking Variance into Account

Suppose rewards are Bernoulli µ. Then the variance is Var(µ) = µ(1− µ).

Maximal around µ ≈ 1
2 , tending to zero for µ near {0, 1}. Conversion / click-through rates(!)

Our concentration inequality

P

µ̂T − µ ≥

√
ln 1

δ

T

 ≤ δ

has a beautiful information-theoretic generalisation in terms of Kullback-Leibler divergence:

KL concentration inequality (single parameter exponential family)

P
{
T KL(µ̂T , µ) ≥ ln

1

δ

}
≤ δ.

Closely related to (Empirical) Bernstein.
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Variance Upshot

For close-by arguments µ ≈ γ,

KL(µ, γ) ≈ (µ− γ)2

2Var(µ)

Fact

Testing how µ relates to γ at confidence δ takes, on average, samples

ln 1
δ

KL(µ, γ)
+ small ≈

2Var(µ) ln 1
δ

(µ− γ)2
+ small



Testing Multiple Versions



More questions emerge

Better to switch from current system to new version or or ?



Let’s find out (in production)!

Testing

System

99
%

1%



What are we trying to solve?

• Want to spend our samples discriminating near-optimal versions

• Need to compare estimated qualities with each other

• We may not know the baseline quality

Versions customarily called arms.
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Racing

For epochs j = 1, 2, . . .

• Estimate each arm up to precision ϵ = 2−j by sampling it
ln 1

δ

2−2j times (in batch).

• Discard all provably sub-optimal arms.

• Stop when single arm remains.

Theorem (Even-Dar, Mannor, and Mansour, 2006)

Arm a of sub-optimality ∆a = µ∗ − µa is eliminated after it has been sampled

constant ·
ln 1

δ

∆2
a

times

Good:

• simple

• reliable

Bad:

• conservative: many union bounds,

• comparisons using per-arm estimates
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Comparing two arms

Let’s compare arm A with arm B, using samples, without knowing their qualities µA or µB .

Fact

If |µA − µ̂A| ≤ ϵA and |µB − µ̂B | ≤ ϵB then∣∣(µA − µB)− (µ̂A − µ̂B)
∣∣ ≤ ϵA + ϵB

A

B

A

B

A

B

Box Ellipse Ideal
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Chernoff Stopping

How to stop as soon as possible?

Need confidence region optimised for problem.

Say arm ı̂t is best for µ̂t , and we want to conclude that it is best for µ.

We need to reject the possibility that any other arm is best, i.e. the composite hypothesis

¬ı̂t :=
{
λ
∣∣ argmax

k
λk ̸= ı̂t

}
.

How to measure the evidence against ¬ı̂t?

Generalised Likelihood Ratio Test (GLRT) Statistic

Λt := ln
maxλ/∈¬ı̂t p(data|λ)
maxλ∈¬ı̂t p(data|λ)

= min
λ∈¬ı̂t

K∑
a=1

Nt,a KL (µ̂t,a, λa)
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On working with GLRT

One can show that

Theorem (Kaufmann and Koolen, 2021)

For every bandit µ

P
µ

(
∃t : Λt ≥ ln

1

δ
+ O(ln ln t)︸ ︷︷ ︸

GLRT is big

and ı̂t ̸= argmax
k

µk︸ ︷︷ ︸
mistake

)
≤ δ.

Cool, so we can stop when Λt ≥ ln 1
δ + O(ln ln t) and safely output ı̂t



Obtaining a sampling rule from GLRT

So we can stop when we see a big value in the GLRT

Λt = min
λ∈¬ı̂t

K∑
a=1

Nt,a KL (µ̂t,a, λa)

To stop early, the sampling rule should drive Λt up.

The GLRT/round is maximised by sampling with proportions

wt := argmax
w∈△K

min
λ∈¬ı̂t

K∑
a=1

wa KL (µ̂t,a, λa)
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Track and Stop Framework

Definition (Track-and-Stop)

• Stop and output ı̂t when Λt = min
λ∈¬ı̂t

K∑
a=1

Nt,a KL (µ̂t,a, λa) ≥ ln
1

δ
+ O(ln ln t)

• Sample with proportions wt = argmax
w∈△K

min
λ∈¬ı̂t

K∑
a=1

wa KL (µ̂t,a, λa)

Theorem (Garivier and Kaufmann, 2016)

The expected stopping time on any bandit µ is

E
µ
[τ ] ≤

ln 1
δ

maxw∈△K
minλ∈¬ı̂t

∑K
a=1 wa KL (µa, λa)

+ small

and this matches lower bounds.
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Upshot of Track-and-Stop

The cost for learning the best arm is

ln 1
δ

maxw∈△K
minλ∈¬ı̂t

∑K
a=1 wa KL (µa, λa)

+ small ≪
∑
a

ln 1
δ

∆2
a

Good:

• reliable

• practically efficient

• optimal (stop search for improvements)

Bad:

• Requires solving argmaxw minλ · · ·
• I hid some details



Conclusion of Part I

We saw how to organise sampling for testing several versions.

Testing

System

99
%

1%



Part II

How can A/B tests be tuned to aid

higher-level decision making?



Question

At some cost in samples, we can find the arm of highest mean.

What are we going to do with that output?

Did we want/need to find that arm?
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Maybe not quite best arm

Many alternative desiderata

• Find the best M arms

• Find all sufficiently good arms

• Arms with combinatorial structure

• Continuously many arms (bandit optimisation)

• Prior knowledge about structure (dosage)

• Personalisation (find a policy: context → arm)

• Multi-objective problems

• Risk measures

• Customers return (!) (MDP)

and challenges

• delays

• censoring

• constraints

• non-stationarity

• comparison feedback



Booming Industry within Multi-Armed Bandit / Testing Literature

Explosion of bandit testing papers with analogous problems:

• Top-m 2017; 2017

• Spectral 2021

• Stratified 2021

• Lipschitz 2019

• Linear 2020; 2020

• Threshold 2017

• MaxGap 2019

• Duelling 2021

• Contextual 2020; 2020

• Pareto 2023

• Minimum 2018

• MCTS 2016

• Markov 2019

• Tail-Risk 2021

• MDP 2021



Spectrum



Best Arm Identification (BAI)

argmax
a∈A

µa where A = {A,B,C ,D}

8.995



All-Better-than-the-Control (ABC)

{
a ∈ {B,C ,D}

∣∣ µa ≥ µA

}
3.995



All-Better-than-Threshold

{
a ∈ A

∣∣ µa ≥ γ
}

19.510



Top-2

{
a ∈ A

∣∣ µa ≥ µ(2)

}
where µ(1) ≥ µ(2) ≥ . . .

3.464



Near-optimal arms

{
a ∈ A

∣∣ µa ≥ µ∗ − ϵ
}

where µ∗ = max
a∈A

µa

31.506



Case: Pareto Frontier



Starting Point

Almost all optimisation is multi-objective when you think about it.

• Vacation : sunny and tasty

• Drug trial : efficacy and toxicity

• Product dev: cost and sustainability

• . . .

Today: not in the mood to scalarise
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Setting

K -armed multi-objective bandit µ⃗ = (µ1, . . . ,µK ).

Each arm k represented by a mean vector µk in Rd .

Observations from arm k are i.i.d. multivariate Gaussian N (µk , I ).

We say arm k dominates arm i , denoted µk ⪰ µi , if µ
j
k ≥ µj

i in every dimension j = 1, . . . , d .

The Pareto front is the set of non-dominated arms:

S∗(µ⃗) :=
{
k
∣∣ ∀i ̸= k : µi ̸⪰ µk

}
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Protocol

We work in the setting of fixed confidence δ ∈ (0, 1).

Protocol

For t = 1, 2, . . . , τ :

• Learner picks an arm It ∈ [K ].

• Learner sees Xt ∼ N (µIt , I )

Learner recommends Pareto front Ŝ ⊆ [K ]



Objectives

Learner is δ-correct if for any bandit instance µ⃗

P⃗
µ

{
τ < ∞∧ Ŝ ̸= S∗(µ⃗)

}
≤ δ

Goal: minimise sample complexity Eµ⃗[τ ] over all δ-correct strategies.



Background Theory: Lower Bound

Define the alternatives to µ⃗ by

Alt(µ⃗) :=
{
λ⃗ ∈ RK×d

∣∣ S∗(λ⃗) ̸= S∗(µ⃗)
}
.

NB recall S∗ is Pareto front

Theorem (Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ⃗

E⃗
µ
[τ ] ≥ T ∗(µ⃗) ln

1

δ

where the characteristic time T ∗(µ⃗) is given by

1

T ∗(µ⃗)
= max

w∈△K

min
λ⃗∈Alt(µ⃗)

1

2

K∑
k=1

wk ∥µk − λk∥2 .
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Background Theory II: Algorithm

Idea is consider the oracle weight map

w∗(µ⃗) := argmax
w∈△K

min
λ⃗∈Alt(µ⃗)

1

2

K∑
k=1

wk ∥µk − λk∥2

and track the plug-in estimate: sample arm It ∼ w∗( ˆ⃗µ(t − 1)
)
.

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then µ⃗ 7→ w∗(µ⃗) is

upper-hemicontinuous and convex-valued. Suitable tracking ensures that as ˆ⃗µ(t) → µ⃗, any

choice wt ∈ w∗( ˆ⃗µ(t − 1)) have

min
w∈w∗(µ⃗)

∥wt −w∥∞ → 0

Track-and-Stop is asymptotically optimal: lim supδ→0
Eµ⃗[τ ]

ln 1
δ

= T ∗(µ⃗).
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Contribution

Kone, Kaufmann, and Richert (2023) consider identifying the Pareto Front among K arms in d

dimensions.

• Asymptotically optimal algorithm for Pareto Front Identification.

• Computations in exponential O(dK ) time per round.

Our Contribution

• Computations in polynomial O(K d) time per round.



What do we need to calculate

Degenne, Koolen, and Ménard (2019): sufficient to implement best-response oracle (=

gradient)

µ⃗,w 7→ min
λ⃗∈Alt(µ⃗)

1

2

K∑
k=1

wk ∥µk − λk∥2

Objective is convex, but domain Alt(µ⃗) is not.

Optimal transport problem
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Being in the Alternative

Recall

λ⃗ ∈ Alt(µ⃗) i.e. S∗(λ⃗) ̸= S∗(µ⃗)

Having a different Pareto front means either

• An arm on the front in µ⃗ is off the front in λ⃗, or

• An arm off the front in µ⃗ is on the front in λ⃗.



Taking arm 4 off the Pareto Front
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7

Example: we dominate arm 4 using arm 6 by moving each to the weighted mid-point in

non-dominated coordinates.
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Putting arm 1 on the Pareto Front
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Example: we make point 1 dominant by moving it north-east, and then moving all dominators

out of the way.
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The heart of the insight

The cost for moving point 1 onto the front is:

min
λ1

w1

2
||µ1 − λ1||2 +

∑
k∈S∗(µ⃗)

wk

2
min
j∈[d ]

(µj
k − λj

1)
2
+

and that is

min
ϕ:S∗(µ⃗)→[d ]

min
λ1

w1

2
||µ1 − λ1||2 +

∑
k∈S∗(µ⃗)

wk

2
(µ

ϕ(k)
k − λ

ϕ(k)
1 )2+︸ ︷︷ ︸

separable convex problem

Not all ϕ : S∗(µ⃗) → [d ] need to be attempted.

Only
(
K+d−1
d−1

)
due to geometry of Rd .
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Conclusion of Part II

With that, everything slots in place and we obtain an algorithm for Pareto Front Identification

with

• asymptotically optimal sample complexity

• polynomial time cost per round

Now interested in going beyond

• Gaussian

• ϵ = 0

• independence



Conclusion



Conclusion of Tutorial

We saw

• How to decide which samples to collect

• Intuition

• Theory and algorithm design

We saw

• The specific question matters for the test!

• Lots to discuss and discover

Let’s talk!
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