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Starting Point: Hedge
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Protocol (Hedge setting with K experts)
Fort=1,2,...

e Learner plays w; € Ak
e Adversary picks £; € [0, 1]¥

Definition (Regret)
The regret after T rounds w.r.t expert k is defined as

3 (att )

Goal: strategy for Learner keeping all R# small.
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Someone claims that their strategy for setting w; ensures sublinear regret R’;- =o(T).
We're at a workshop about sequential testing by betting. Let's!

Forecasts w; are claimed to agree with Outcomes £; in the sense that

.
Yk : lim %Z(w;et—eﬁ) <0

T—o0
=il

Let's read that as the claim that £, £5,... come from any joint P satisfying

Vk,t:E [w;et .

ft—l} <0
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Betting

If we assume the null is

Ho = {]P’ on ﬁl,fz,...‘Vk, t:E [fw{et y

_}go}

Then what are the available e-values to bet on?
Theorem (Larsson, ISI WSC 2021 Virtual Talk)

Given Fi_1, all admissible e-values for Hq are of the form

En.(£:) = 1+Z77t< 14 — )

for nk > 0 (since they correspond to inequality constraints) and n; ensuring
non-negativity ming,cpo 1)« En,(€:) > 0, i.e. Zszl (nf — Wt"lTnt)Jr <1



Actual betting strategy

Simple and effective: mix over experts k, repeating fixed bet 7 > 0 and

1+ (wie, - tf) > enluttt)r2

Definition (Hedge supermartingale; Chernov and Vovk 2009)

1 4 Y2 K1
._ el n(wle—0)—n?/2 * nRE—Tn?/2
CDT.—EK”e(ff ) —EKeT
k=1 t=1 k=1
. . In & .
Say we reject Hog when @1 > 1/a. This occurs for n = = if

1 K K
Ik : RE > —In—+Tg = /2T —
n o o
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Defensive Forecasting .@i

We have a test supermartingale ® 1 against Hg: the hypothesis that the Learner
guarantees sub-linear regret.

So?

We can turn this test into a strategy for Learner.

Idea: Always pick w; to ensure ®; does not get big.

D

°
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Defensive Forecasting .@i

Let's see. We can guarantee

&\

0

b

K

1 *
O < Y RenR§_T”2/Z (1 +7 (wTT+1£T+1 - €kT+1)) © o,
k=1

Affine in £1,1. So set wt 1 to cancel coefficient:

1 nRk—Tn2/2
LenRr /2y

x|

K
1 k 2
0 = e"RT=Tn"/2p (4 —e = wk .
E n(wry1 — ex) T+1 K L Rl —Ti)
k=1 Do K€ n

D
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Online Learning Consequence

Theorem (Freund and Schapire, 1997)
The algorithm

k &Rt
w .
T+1 K Y
> €T
with n = % guarantees regret bounded by

Vk:RY < V2TIhK



Postmortem

We started with an online learning protocol.

We desired small regret compared to any expert k

We put forward a test supermartingale against that goal

And then we synthesised an algorithm, from that test, achieving the goal.



Postmortem

We started with an online learning protocol.

We desired small regret compared to any expert k

We put forward a test supermartingale against that goal

And then we synthesised an algorithm, from that test, achieving the goal.

E-Lessons
o (Desired) regret guarantees are generating the null

e Several goals = mixture martingale
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Squint

Squint tightens all the screws on the Hedge supermartingale.

What?

e No tuning parameter (7)

e Anytime

e Stochastic Luckiness

e Comparator adaptivity; quantile bounds; countably many experts K = oo

e Same computational cost
How?

e Refined bets
e Prior on experts

e Prior on 1 (improper!)



Squint Supermartingale {

Let us define the instantaneous regret in round t w.r.t. expert k by

rtk E= wtﬁt Ef

We know that critical rX are small. So let's use ever-so-slightly-tighter e-value
1+nrk > =P (rf)?

Definition (Squint supermartingale; Koolen and van Erven 2015)

Fix prior w € Ak. Define

2k
“Vr _1

-
Zﬂ'k/ ——————dp where V# = 2:(r,_f‘)2
t=1
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Mixture of centred supermartingales e2=¢~ — 1 under improper prior %dn possibly
negative



Ehh, did we need non-negativity?

F-rPVE _q
- S [T
Mixture of centred supermartingales e2=¢~ — 1 under improper prior %dn possibly
negative
Still

®r>—InT.



Defensive Forecasting for Squint @i

We have

K 1 pRk_n2Vvk T _ pk _
Pry1 < Zm/oz e (1+77(w:7+1£T+1 1)) — 1
k=1

for the unique equaliser choice

% an7772Vk
Tk [ €T Tdn

K 1
2
Rk_ 2vk . k
0= E wk/ e"TTTVT (w41 — ek) dn ie. Wi = T
_ 0 . [2 anRy—n? V-
k=1 =17 Jo €TV dn

Cool feature: wt has a closed form expression (Gaussian CDFs) though ® does not.
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Small is Beautiful for Squint

Theorem

nT

VT :dr <®g=0 implies Vk,T:RE < 2,/Vkin
Tk

jnInT
Why? Thinking about n = {/ ~oit- gives
T

enR PVE Tk Rk _|n InT
Zﬂk

n
E ke " _InT



Small is Beautiful for Squint

Theorem
o o k Ik In T
VT :¢: < dp=0 implies Vk, T: R < 24/V{In—
Tk
In InT
Why? Thinking about n = Vi gives
T
K k _2\/k K InT nT
nR—m"Vy _ 1 T Rk—Inln
CD-r:ZWk g ! n%Zﬂ'ke T K —InT
k=1 70 7] k=1

In fact the quantile upgrade is also true:

vge Ak, T: E [RE] < 2\/k]E [VA] (KL(q||m) + Inln T)
~q ~q
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We should explore

e deeply improper priors
e supermartingales possibly negative yet bounded below
e Mixtures and duality of KL (Donsker-Varadhan)

Muriel’s talk
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Many cool ideas/extensions/techniques

Upgrade to online convex optimisation (continuously many actions).
MetaGrad (van Erven and Koolen, 2016)

Black-Box reductions (Cutkosky and Orabona, 2018)

FreeGrad (Mhammedi and Koolen, 2020), this blog post E-laborates
Coin Betting (Orabona and Pal, 2016)


http://blog.wouterkoolen.info/FreeGradMart/post.html

Muscada




Multi-Scale Update to the Protocol

!‘_,]l"l‘i‘@

Fix a vector o € (0, 00)K of positive loss ranges.
Now let's say the losses £; are such that /& € [+0y].

We want regret bounded by

Vk:RE < o,VThhK

Connection to chaining.



Failure i ]’iﬁhi

Let's try something akin to
1 k 2
b+ — = eMkRF=Tng/2

Recall that
k_ .2
et /2 where rtk = wit; —é’,_f

is an e-value for rf € [£1], which follows from £; € [0,1]X. But now ¢ € [+04].

Problem For any k, even with o4 small, [r¥| can be as high as max; o;.
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Muscada Supermartingale

Inspiration:

Fact (Duality for KL)

For any w € Ak and X € R, In Zwkexk = max (w,X)— KL(w|w).
’LUEAK

Define p1 by ,ukT = oxV T In K. Recall that we want R# < u"T.

Definition (Muscada supermartingale; Pérez-Ortiz and Koolen 2022)

&r = ®(R7 —pu1,n7) = wgwAa{K)m,RT—uﬂ—Dnr(’w,u).

where for w,u € Ay the relative entropy at multi-scale n is

K
Z wi In(wi /uk) — wi + ug
Mk

k=1



Muscada Analysis

Recall ,ukT =oxV T InK, and let us fix n’} ~ O_ikq/%

¢, < q)(Rt - Htﬂ?t—l)
= ¢(Rt — Mt-1 — 477t—10'27 TIt—l)
< <I>(Rt—l — Mi-1, 77t—1)

= M?EE(K)W’RH — #e-1) — D,y (w, u)

= <’wt, R 1 — Ht—1> - Dnt,l('wt, U)

< Ri 1 —pi—1)— D
= wrenAa(XK)<w7 t—1 — Mt 1> nr71(w>u)

¢(Rt—1 —,Ut—lﬂ’lt—l) = &

Hence, ®; < ®;_1, as we were to show.

e

n — Dy, decr.
by def. of ¢
by range control
by def. of ®

by def. of w;
since w; € A(K)

by def. of ®, ®,.



Postmortem

Indeed
R < oyVTInK

E-lessons

e Should investigate how to combine test supermartingales with subtle dependence



Conclusion




Conclusion

e Many cool relations between testing and learning

e let's talk more!

Thanks!
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