Supermartingales in Online Learning

Wouter M. Koolen

CWI and University of Twente

SAVI 2 Workshop Oberwolfach, May 8, 2024

Before we begin: Postdoc Position

On efficient computation of saddle points arising in GRO/KLInf/GLRT/...

Co-hosted by CWI & INRIA team 4TUNE

- Pierre Gaillard (Grenoble)
- Rémy Degenne (Lille)
- Adrien Taylor (Paris)

Vacancy

Let's begin: Warm Thanks

Tim van Erven

Zakaria Mhammedi

Muriel Pérez-Ortiz

Online Learning: Is it E-relevant?

Test Supermartingale

Starting Point: Hedge

Online Learning Setup

Protocol (Hedge setting with K experts)

For t = 1, 2, ...

- ullet Learner plays $w_t \in riangle_{\mathcal{K}}$
- Adversary picks $\ell_t \in [0,1]^K$

Online Learning Setup

Protocol (Hedge setting with K experts)

For t = 1, 2, ...

- ullet Learner plays $oldsymbol{w}_t \in riangle_{oldsymbol{K}}$
- Adversary picks $\ell_t \in [0,1]^K$

Definition (Regret)

The regret after T rounds w.r.t expert k is defined as

$$R_T^k := \sum_{t=1}^T \left(w_t^{\mathsf{T}} \ell_t - \ell_t^k \right)$$

Online Learning Setup

Protocol (Hedge setting with K experts)

For t = 1, 2, ...

- ullet Learner plays $oldsymbol{w}_t \in riangle_K$
- Adversary picks $\ell_t \in [0,1]^K$

Definition (Regret)

The regret after T rounds w.r.t expert k is defined as

$$R_T^k := \sum_{t=1}^T \left(w_t^{\mathsf{T}} \ell_t - \ell_t^k \right)$$

Goal: strategy for Learner keeping all R_T^k small.

Someone claims that their strategy for setting w_t ensures sublinear regret $R_T^k = o(T)$.

Someone claims that their strategy for setting w_t ensures sublinear regret $R_T^k = o(T)$.

We're at a workshop about sequential testing by betting. Let's!

Someone claims that their strategy for setting w_t ensures sublinear regret $R_T^k = o(T)$.

We're at a workshop about sequential testing by betting. Let's!

Forecasts w_t are claimed to agree with Outcomes ℓ_t in the sense that

$$\forall k: \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{I} \left(w_t^{\mathsf{T}} \ell_t - \ell_t^k \right) \leq 0$$

Someone claims that their strategy for setting w_t ensures sublinear regret $R_T^k = o(T)$.

We're at a workshop about sequential testing by betting. Let's!

Forecasts w_t are claimed to agree with Outcomes ℓ_t in the sense that

$$\forall k : \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{I} \left(w_t^{\mathsf{T}} \ell_t - \ell_t^k \right) \leq 0$$

Let's read that as the claim that ℓ_1,ℓ_2,\ldots come from any joint $\mathbb P$ satisfying

$$\forall k, t : \mathbb{E}_{\ell_t} \left[w_t^{\mathsf{T}} \ell_t - \ell_t^k \middle| \mathcal{F}_{t-1} \right] \leq 0$$

Betting

If we assume the null is

$$\mathcal{H}_0 = \left\{ \mathbb{P} \text{ on } \ell_1, \ell_2, \ldots \middle| \forall k, t : \underset{\ell_t}{\mathbb{E}} \left[w_t^{\intercal} \ell_t - \ell_t^k \middle| \mathcal{F}_{t-1} \right] \leq 0 \right\}$$

Then what are the available e-values to bet on?

Betting

If we assume the null is

$$\mathcal{H}_0 = \left\{ \mathbb{P} \text{ on } \ell_1, \ell_2, \ldots \middle| \forall k, t : \underset{\ell_t}{\mathbb{E}} \left[w_t^{\mathsf{T}} \ell_t - \ell_t^k \middle| \mathcal{F}_{t-1} \right] \leq 0 \right\}$$

Then what are the available e-values to bet on?

Theorem (Larsson, ISI WSC 2021 Virtual Talk)

Given \mathcal{F}_{t-1} , all admissible e-values for \mathcal{H}_0 are of the form

$$E_{\eta_t}(\ell_t) := 1 + \sum_{k=1}^K \eta_t^k \left(w_t^\intercal \ell_t - \ell_t^k
ight)$$

for $\eta_t^k \geq 0$ (since they correspond to inequality constraints) and η_t ensuring non-negativity $\min_{\ell_t \in [0,1]^K} E_{\eta_t}(\ell_t) \geq 0$, i.e. $\sum_{k=1}^K \left(\eta_t^k - w_t^k \mathbf{1}^\mathsf{T} \eta_t \right)_\perp \leq 1$.

Actual betting strategy

Simple and effective: mix over experts k, repeating fixed bet $\eta>0$ and

$$1 + \eta \left(\boldsymbol{w}_t^\intercal \boldsymbol{\ell}_t - \boldsymbol{\ell}_t^k \right) \; \geq \; e^{\eta \left(\boldsymbol{w}_t^\intercal \boldsymbol{\ell}_t - \boldsymbol{\ell}_t^k \right) - \eta^2/2}$$

Definition (Hedge supermartingale; Chernov and Vovk 2009)

$$\Phi_{T} := \sum_{k=1}^{K} \frac{1}{K} \prod_{t=1}^{T} e^{\eta \left(w_{t}^{\mathsf{T}} \ell_{t} - \ell_{t}^{k} \right) - \eta^{2}/2} = \sum_{k=1}^{K} \frac{1}{K} e^{\eta R_{T}^{k} - T \eta^{2}/2}$$

Say we reject \mathcal{H}_0 when $\Phi_T \geq 1/\alpha$. This occurs for $\eta = \sqrt{\frac{2 \ln \frac{K}{\alpha}}{T}}$ if

$$\exists k : R_T^k \geq \frac{1}{\eta} \ln \frac{K}{\alpha} + T \frac{\eta}{2} = \sqrt{2T \ln \frac{K}{\alpha}}$$

We have a test supermartingale Φ_T against \mathcal{H}_0 : the hypothesis that the Learner guarantees sub-linear regret.

We have a test supermartingale Φ_T against \mathcal{H}_0 : the hypothesis that the Learner guarantees sub-linear regret.

So?

We have a test supermartingale Φ_T against \mathcal{H}_0 : the hypothesis that the Learner guarantees sub-linear regret.

So?

We can turn this test into a strategy for Learner.

Idea: Always pick w_t to ensure Φ_t does not get big.

Let's see. We can guarantee

$$\Phi_{T+1} \leq \sum_{k=1}^{K} \frac{1}{K} e^{\eta R_T^k - T\eta^2/2} \left(1 + \eta \left(w_{T+1}^\intercal \ell_{T+1} - \ell_{T+1}^k \right) \right) \stackrel{(\star)}{=} \Phi_T$$

Affine in ℓ_{T+1} . So set w_{T+1} to cancel coefficient:

$$0 = \sum_{k=1}^{K} \frac{1}{K} e^{\eta R_T^k - T\eta^2/2} \eta \left(w_{T+1} - e_k \right) \qquad \Rightarrow \qquad w_{T+1}^k = \frac{\frac{1}{K} e^{\eta R_T^k - T\eta^2/2} \eta}{\sum_{j=1}^{K} \frac{1}{K} e^{\eta R_T^j - T\eta^2/2} \eta}$$

Online Learning Consequence

Theorem (Freund and Schapire, 1997)

The algorithm

$$w_{T+1}^{k} = \frac{e^{\eta R_{T}^{k}}}{\sum_{j=1}^{K} e^{\eta R_{T}^{j}}}$$

with $\eta = \sqrt{\frac{2 \ln K}{T}}$ guarantees regret bounded by

$$\forall k : R_T^k \leq \sqrt{2T \ln K}$$

Postmortem

- We started with an online learning protocol.
- ullet We desired small regret compared to any expert k
- We put forward a test supermartingale against that goal
- And then we synthesised an algorithm, from that test, achieving the goal.

Postmortem

- We started with an online learning protocol.
- We desired small regret compared to any expert k
- We put forward a test supermartingale against that goal
- And then we synthesised an algorithm, from that test, achieving the goal.

E-Lessons

- (Desired) regret guarantees are generating the null
- Several goals ⇒ mixture martingale

Squint

Squint

Squint tightens all the screws on the $Hedge\ supermartingale$.

What?

- No tuning parameter (η)
- Anytime
- Stochastic Luckiness
- ullet Comparator adaptivity; quantile bounds; countably many experts ${\cal K}=\infty$
- Same computational cost

How?

- Refined bets
- Prior on experts
- Prior on η (improper!)

Squint Supermartingale

Let us define the instantaneous regret in round t w.r.t. expert k by

$$r_t^k := \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{\ell}_t - \ell_t^k$$

We know that critical r_t^k are small. So let's use ever-so-slightly-tighter e-value

$$1 + \eta r_t^k \geq e^{\eta r_t^k - \eta^2 (r_t^k)^2}$$

Definition (Squint supermartingale; Koolen and van Erven 2015)

Fix prior $\pi \in \triangle_K$. Define

$$\Phi_T := \sum_{k=1}^K \pi_k \int_0^{\frac{1}{2}} \frac{e^{\eta R_T^k - \eta^2 V_T^k} - 1}{\eta} \, \mathrm{d}\eta \qquad \text{where} \qquad V_T^k = \sum_{t=1}^T (r_t^k)^2$$

Ehh, did we need non-negativity?

$$\Phi_T := \sum_{k=1}^K \pi_k \int_0^{\frac{1}{2}} \frac{e^{\eta R_T^k - \eta^2 V_T^k} - 1}{\eta} \, \mathrm{d}\eta$$

Mixture of centred supermartingales $e^{\sum_t \cdots} - 1$ under improper prior $\frac{1}{\eta}\,\mathrm{d}\eta$ possibly negative

Ehh, did we need non-negativity?

$$\Phi_T := \sum_{k=1}^K \pi_k \int_0^{\frac{1}{2}} \frac{e^{\eta R_T^k - \eta^2 V_T^k} - 1}{\eta} \, \mathrm{d}\eta$$

Mixture of centred supermartingales $e^{\sum_t \cdots} - 1$ under improper prior $\frac{1}{\eta} \, \mathrm{d} \eta$ possibly negative

Still

$$\Phi_T \geq -\ln T$$
.

Defensive Forecasting for Squint

We have

$$\Phi_{T+1} \leq \sum_{k=1}^K \pi_k \int_0^{\frac{1}{2}} \frac{e^{\eta R_T^k - \eta^2 V_T^k} \left(1 + \eta \left(\boldsymbol{w}_{T+1}^\intercal \boldsymbol{\ell}_{T+1} - \boldsymbol{\ell}_{T+1}^k\right)\right) - 1}{\eta} \, \mathrm{d}\eta \ \stackrel{(\star)}{=} \ \Phi_T$$

for the unique equaliser choice

$$0 = \sum_{k=1}^{K} \pi_k \int_0^{\frac{1}{2}} e^{\eta R_T^k - \eta^2 V_T^k} \left(w_{T+1} - e_k \right) d\eta \qquad \text{i.e.} \qquad w_{T+1}^k = \frac{\pi_k \int_0^{\frac{1}{2}} e^{\eta R_T^k - \eta^2 V_T^k} d\eta}{\sum_{j=1}^{K} \pi_j \int_0^{\frac{1}{2}} e^{\eta R_T^j - \eta^2 V_T^j} d\eta}$$

Cool feature: w_T has a closed form expression (Gaussian CDFs) though Φ_T does not.

Small is Beautiful for Squint

Theorem

$$\forall T: \Phi_T \leq \Phi_0 = 0$$
 implies $\forall k, T: R_T^k \leq 2\sqrt{V_T^k \ln \frac{\ln T}{\pi_k}}$

Small is Beautiful for Squint

Theorem

$$\forall T: \Phi_T \leq \Phi_0 = 0$$
 implies $\forall k, T: R_T^k \leq 2\sqrt{V_T^k \ln \frac{\ln T}{\pi_k}}$

Why? Thinking about $\eta = \sqrt{\frac{\ln \frac{\ln T}{\pi_k}}{V_k^T}}$ gives

$$\Phi_{T} \; = \; \sum_{k=1}^{K} \pi_{k} \int_{0}^{\frac{1}{2}} \frac{e^{\eta R_{T}^{k} - \eta^{2} V_{T}^{k}} - 1}{\eta} \, \mathrm{d} \eta \; \approx \; \sum_{k=1}^{K} \pi_{k} e^{\sqrt{\frac{\ln \frac{\ln T}{\pi_{k}}}{V_{T}^{k}} R_{T}^{k} - \ln \frac{\ln T}{\pi_{k}}}} - \ln T$$

Small is Beautiful for Squint

Theorem

$$\forall T: \Phi_T \leq \Phi_0 = 0$$
 implies $\forall k, T: R_T^k \leq 2\sqrt{V_T^k \ln \frac{\ln T}{\pi_k}}$

Why? Thinking about $\eta = \sqrt{\frac{\ln \frac{\ln T}{\pi_k}}{V_k^r}}$ gives

$$\Phi_{T} = \sum_{k=1}^{K} \pi_{k} \int_{0}^{\frac{1}{2}} \frac{e^{\eta R_{T}^{k} - \eta^{2} V_{T}^{k}} - 1}{\eta} d\eta \approx \sum_{k=1}^{K} \pi_{k} e^{\sqrt{\frac{\ln \frac{\ln T}{\pi_{k}}}{V_{T}^{k}} R_{T}^{k} - \ln \frac{\ln T}{\pi_{k}}}} - \ln T$$

In fact the quantile upgrade is also true:

$$\forall q \in \triangle_{\mathcal{K}}, \, T : \underset{k \sim q}{\mathbb{E}} \left[R_T^k \right] \, \leq \, 2 \sqrt{\underset{k \sim q}{\mathbb{E}} \left[V_T^k \right] \left(\mathsf{KL}(q \| \pi) + \mathsf{In} \, \mathsf{In} \, T \right)}$$

E-Lessons

We should explore

- deeply improper priors
- supermartingales possibly negative yet bounded below
- Mixtures and duality of KL (Donsker-Varadhan)

E-Lessons

We should explore

- deeply improper priors
- supermartingales possibly negative yet bounded below
- Mixtures and duality of KL (Donsker-Varadhan)

Muriel's talk

Intermezzo

Many cool ideas/extensions/techniques

Upgrade to online convex optimisation (continuously many actions).

MetaGrad (van Erven and Koolen, 2016)

Black-Box reductions (Cutkosky and Orabona, 2018)

FreeGrad (Mhammedi and Koolen, 2020), this blog post E-laborates

Coin Betting (Orabona and Pal, 2016)

Muscada

Multi-Scale Update to the Protocol

Fix a vector $\sigma \in (0, \infty)^K$ of positive loss ranges.

Now let's say the losses ℓ_t are such that $\ell_t^k \in [\pm \sigma_k]$.

We want regret bounded by

$$\forall k : R_T^k \leq \sigma_k \sqrt{T \ln K}$$

Connection to chaining.

Failure

Let's try something akin to

$$\Phi_T = \sum_k \frac{1}{K} e^{\eta_k R_T^k - T \eta_k^2/2}$$

Recall that

$$e^{\eta r_t^k - \eta^2/2}$$
 where $r_t^k = \boldsymbol{w}_t^\intercal \boldsymbol{\ell}_t - \ell_t^k$

is an e-value for $r_t^k \in [\pm 1]$, which follows from $\ell_t \in [0,1]^K$. But now $\ell_t^k \in [\pm \sigma_k]$.

Problem For any k, even with σ_k small, $|r_t^k|$ can be as high as $\max_j \sigma_j$.

Muscada Supermartingale

Inspiration:

Fact (Duality for KL)

For any $\pi \in \triangle_K$ and $\mathbf{X} \in \mathbb{R}^K$, $\ln \sum_k \pi_k e^{X_k} = \max_{\mathbf{w} \in \triangle_K} \langle \mathbf{w}, \mathbf{X} \rangle - \mathsf{KL}(\mathbf{w} \| \pi)$.

Muscada Supermartingale

Inspiration:

Fact (Duality for KL)

For any
$$m{\pi} \in \triangle_K$$
 and $m{X} \in \mathbb{R}^K$, $\ln \sum_k \pi_k e^{X_k} = \max_{m{w} \in \triangle_K} \langle m{w}, m{X} \rangle - \mathsf{KL}(m{w} \| m{\pi})$.

Define μ_T by $\mu_T^k := \sigma_k \sqrt{T \ln K}$. Recall that we want $R_T^k \le \mu_T^k$.

Definition (Muscada supermartingale; Pérez-Ortiz and Koolen 2022)

$$\Phi_{\mathcal{T}} \ := \ \Phi(oldsymbol{R}_{\mathcal{T}} - oldsymbol{\mu}_{\mathcal{T}}, oldsymbol{\eta}_{\mathcal{T}}) \ := \ \max_{oldsymbol{w} \in riangle(K)} \langle oldsymbol{w}, oldsymbol{R}_{\mathcal{T}} - oldsymbol{\mu}_{\mathcal{T}}
angle - oldsymbol{D}_{oldsymbol{\eta}_{\mathcal{T}}}(oldsymbol{w}, oldsymbol{u}).$$

where for $w,u\in\triangle_{\mathcal{K}}$ the relative entropy at multi-scale η is

$$D_{\boldsymbol{\eta}}(\boldsymbol{w}, \boldsymbol{u}) = \sum_{k=1}^{K} \frac{w_k \ln(w_k/u_k) - w_k + u_k}{\eta_k}$$

Muscada Analysis

Recall $\mu_T^k \coloneqq \sigma_k \sqrt{T \ln K}$, and let us fix $\eta_T^k \approx \frac{1}{\sigma_k} \sqrt{\frac{\ln K}{T}}$

$$egin{array}{lll} \Phi_t & \leq & \Phi(R_t - \mu_t, \eta_{t-1}) & \eta \mapsto D_{\eta} ext{ decr.} \ & = & \Phi(R_t - \mu_{t-1} - 4\eta_{t-1}\sigma^2, \eta_{t-1}) & ext{by def. of } \mu_t \ & \leq & \Phi(R_{t-1} - \mu_{t-1}, \eta_{t-1}) & ext{by range control} \ & = & \max_{oldsymbol{w} \in \triangle(K)} \langle oldsymbol{w}, R_{t-1} - \mu_{t-1} \rangle - D_{\eta_{t-1}}(oldsymbol{w}, oldsymbol{u}) & ext{by def. of } \Phi \ & = & \langle oldsymbol{w}_t, R_{t-1} - \mu_{t-1} \rangle - D_{\eta_{t-1}}(oldsymbol{w}_t, oldsymbol{u}) & ext{since } oldsymbol{w}_t \in \triangle(K) \ & \leq & \max_{oldsymbol{w} \in \triangle(K)} \langle oldsymbol{w}, R_{t-1} - \mu_{t-1} \rangle - D_{\eta_{t-1}}(oldsymbol{w}, oldsymbol{u}) & ext{since } oldsymbol{w}_t \in \triangle(K) \ & = & \Phi(R_{t-1} - \mu_{t-1}, \eta_{t-1}) = & \Phi_{t-1} & ext{by def. of } \Phi, \Phi_t. \end{array}$$

Hence, $\Phi_t \leq \Phi_{t-1}$, as we were to show.

Postmortem

Indeed

$$R_T^k \leq \sigma_k \sqrt{T \ln K}$$

E-lessons

• Should investigate how to combine test supermartingales with subtle dependence

Conclusion

Conclusion

- Many cool relations between testing and learning
- Let's talk more!

Thanks!

References i

- Chernov, A. and V. Vovk (2009). "Prediction with expert evaluators' advice". In: CoRR abs/0902.4127.
- Cutkosky, A. and F. Orabona (2018). "Black-Box Reductions for Parameter-free Online Learning in Banach Spaces". In: Proceedings of the 31st Annual Conference on Learning Theory (COLT). Vol. 75.
- Freund, Y. and R. E. Schapire (1997). "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting". In: Journal of Computer and System Sciences 55.
- Koolen, W. M. and T. van Erven (June 2015). "Second-order Quantile Methods for Experts and Combinatorial Games". In: Proceedings of the 28th Annual Conference on Learning Theory (COLT).

References ii

- Mhammedi, Z. and W. M. Koolen (July 2020). "Lipschitz and Comparator-Norm Adaptivity in Online Learning". In: Proceedings of the 33rd Annual Conference on Learning Theory (COLT).
- Orabona, F. and D. Pal (2016). "Coin Betting and Parameter-Free Online Learning". In: Advances in Neural Information Processing Systems 29.
- Pérez-Ortiz, M. and W. M. Koolen (Dec. 2022). "Luckiness in Multiscale Online Learning". In: Advances in Neural Information Processing Systems (NeurIPS) 35.
- Van Erven, T. and W. M. Koolen (Dec. 2016). "MetaGrad: Multiple Learning Rates in Online Learning". In: Advances in Neural Information Processing Systems (NeurIPS) 29.