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Games!

Lots of interest, old and new, in solving convex-concave min-max

problems

min
p∈P

max
q∈Q

f (p, q)

• Economics

• Optimisation

• Machine learning (GANs)

• Online learning and Bandits (Track-and-Stop)

• . . .
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What is a solution?

Given ϵ ≥ 0, we aim to find an approximate saddle point

(p⋆, q⋆) ∈ P ×Q,

satisfying

max
q∈Q

f (p⋆, q)−min
p∈P

f (p, q⋆) ≤ 2ϵ



How are we going to find that solution

We consider the first-order query model.

We start with an unknown f from a known class F .

Interaction protocol

In rounds 1, 2, . . . ,T

• Learner issues query (p, q)

• Learner receives feedback (∇pf (p, q),∇qf (p, q))

The learner outputs an ϵ-optimal saddle point (p⋆, q⋆).

Query complexity

How many first-order queries are necessary and sufficient for a

sequential learner to output an approximate saddle point for any

f ∈ F?
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Making the question more tractable

Consider special case of zero-sum matrix games (bilinear functions over

probability simplex):

P = Q = △K , F =
{
f (p, q) = p⊺Mq

∣∣∣ M ∈ [±1]K×K
}

(∇pf (p, q),∇qf (p, q)) = (Mq,M⊺p)

Algorithms since Brown (1951), up to Rakhlin and Sridharan (2013).

Lower bounds remain elusive.

⇒ Optimal query complexity unknown.
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What is known: Upper Bounds

1951: First iterative methods by Brown (1951) and Robinson (1951).

1999: Freund and Schapire (1999) discovered the relation to Regret

Bounds: Can compute an ϵ-Nash-equilibrium with T iterations,

where

T = O

(
logK

ϵ2

)
2011: Daskalakis, Deckelbaum, and Kim (2011) can compute an

ϵ-Nash-equilibrium with T iterations, where

T = O

(
f (K )

ϵ

)
2013: Rakhlin and Sridharan (2013) can compute an ϵ-Nash-equilibrium

with T iterations, where

T = O

(
logK

ϵ

)



What is known: Lower Bounds

2018: Ouyang and Xu (2021) Showed a lower bound on the query

complexity for Saddle-Point Problems with curvature and

rotationally invariant constraint sets.

2020: Ibrahim et al. (2020) adapted Nesterov’s lower bound technique for

games. This requires a two-step linear span assumption.



Our Results

Lower Bounds:

• K/2− 1 queries needed for learning exact ϵ = 0 equilibrium

• Ω
(

log 1
ϵK

logK

)
queries required when ϵ ≤ 1

K 4 .

Upper Bounds:

• If entries in known countable set, say M ∈ QK×K , one query suffices.
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One Query Suffices

Suppose Mij ∈ {0, . . . , n − 1} for some n ≥ 1.

Consider query (p, q) with p arbitrary and qj ∝ n−j . Then the i th entry

of the feedback (to the p player) is

∇pf (p, q)i =
K∑
j=1

Mijqj ∝
K∑
j=1

Mijn
−j

This is the i th row of M written in base n.

We recover the entire matrix in one query.

Theorem

One query suffices if entries Mij in a known countable set.
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Upshot

Ok, so we found some lame coding trick exploiting infinite-precision.

Why is this cool?

Existing lower bound techniques construct matrices with entries from a

finite alphabet, and hence must be powerless.

• Nesterov-style lower bound (Ibrahim et al., 2020)

• Rademacher entries (Orabona and Pál, 2018)

• Reduction to hard combinatorial / submodular instance

(Babichenko, 2016; Hart and Nisan, 2018)
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Ingredients and main Ideas

The fully mixed case is equalised Mq⋆ = M⊺p⋆ ∝ 1.

We consider as our class of matrices perturbations of (scaled) identity IK ,

for which saddle points are near uniform and fully mixed. So we do not

hit the non-negativity constraints.

We show that if the span of the feedback includes 1, then the learner

knows an exact equilibrium.

To prove a lower bound, our job is to sequentially respond to the queries

in a consistent way, while keeping 1 outside/far from the span of the

feedback for as long as possible.
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Technique

We work with matrices

B0 = B∥·∥1,∞

(
IK
2
,

1

16K 2

)
=

{
M ∈ [±1]K×K s.t.

∣∣∣∣Mij −
δi=j

2

∣∣∣∣ ≤ 1

16K 2

}
.

Any M ∈ B0 has

• All equilibria of M are fully mixed

• Non-zero value minp maxq p
⊺Mq > 0.



Main Idea

Consider t rounds with queries

(ps , qs)s≤t

and feedback

(ℓ(p)s , ℓ(q)s )s≤t

Consistent matrices are

Et =
{
M ∈ B0

∣∣∣M⊺ps = ℓ(q)s and Mqs = ℓ(p)s for all s ≤ t
}



Key Insight

Lemma

Let (p, q) be a common Nash equilibrium for all M ∈ Et ̸= ∅. Then
p ∈ Span(p1:t) and q ∈ Span(q1:t).

Proof.

Fix M ∈ Et . Let p̄ = p − ProjSpan(p1:t)(p), and let uq ̸= 0 be orthogonal

to Span(q1:t). Then M ′ = M + αp̄u⊺q ∈ Et . But then

0 = (M −M ′)⊺p = α(p̄⊺p)uq = α∥p̄∥2uq

So p̄ = 0 and hence p ∈ Span(p1:t).

Under same assumption, 1 ∈ Span(ℓ
(p)
1:t ) ∩ Span(ℓ

(q)
1:t ).
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Keeping 1 from the span of the feedback

Theorem

For T ≤ K/2− 1 rounds we can maintain Mt ∈ Et s.t. 1 ̸∈ Span(ℓ
(q)
1:T ).

By induction on t.

For the base case, we pick M0 = IK/2 ∈ E0.

Upon query pt+1 with fresh part p̄t+1 = pt+1 − ProjSpan(p1:t)(pt+1), set

Mt+1 = Mt +
p̄t+1

∥p̄t+1∥2
u⊺t

where we pick ut orthogonal to 1, as well as to

• Span(q1:t) (consistent with past feedback ℓ
(p)
t )

• Span(ℓ
(q)
1:t ) (proof artifact)

• M⊺
t pt+1 (the threat)

The new feedback is ℓ
(q)
t+1 = M⊺

t+1pt+1 = M⊺
t pt+1 + ut . If

1 =
∑t

s=1 αsℓ
(q)
s + αt+1ℓ

(q)
t+1 then 0 = 1⊺ut = αt+1∥ut∥, so αt+1 = 0.
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Result

We can keep going until all dimensions are exhausted and we cannot pick

ut orthogonal to Span(q1:t , ℓ
(q)
1:t ,1,M

⊺
t+1pt) of 2t + 2 vectors. We obtain

Theorem

The query complexity of learning the exact ϵ = 0 nash equilibrium in

the first-order query model is T ≥ K/2− 1.



Quantitative case

Our result for approximate ϵ > 0 equilibria is based on keeping∥∥∥1− Proj
Span(ℓ

(q)
1:t )

(1)
∥∥∥ big (instead of non-zero).

Lemma

We can ensure∥∥∥1− Proj
Span(ℓ

(q)
1:T )

(1)
∥∥∥2 ≥ K

(
1

8KT 2

)T+1

Lemma

Tuning all ingredients gives query complexity lower bound

T ≥
log 1

K 4ϵ

logK
∧ K − 3

Constant for ϵ = 1
K c . Insightful e.g. when ϵ = K−K .
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Conclusion

First non-trivial lower bounds.

Lots of open space.

Need even sharper techniques.

Thanks!
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