Towards characterizing the first-order query complexity of learning (approximate) Nash equilibria in zero-sum matrix games

Wouter M. Koolen

UNIVERSITY OF TWENTE.

SCOOL seminar Inria Lille Friday 13th October, 2023

Warm Thanks

Sarah Sachs

Tim van Erven

Outline

- 1. Motivation
- 2. Upper Bounds
- 3. New Lower Bounds
- 4. State of the Art
- 5. Conclusion

Games!

Lots of interest, old and new, in solving **convex-concave** min-max problems

$$\min_{p \in \mathcal{P}} \max_{q \in \mathcal{Q}} f(p, q)$$

Games!

Lots of interest, old and new, in solving **convex-concave** min-max problems

$$\min_{p \in \mathcal{P}} \max_{q \in \mathcal{Q}} f(p, q)$$

- Economics
- Optimisation
- Machine learning (GANs)
- Online learning and Bandits (Track-and-Stop)
- . . .

What is a solution?

Given $\epsilon \geq 0$, we aim to find an approximate saddle point

$$(p_{\star},q_{\star})\in\mathcal{P}\times\mathcal{Q},$$

satisfying

$$\max_{q \in \mathcal{Q}} f(p_{\star}, q) - \min_{p \in \mathcal{P}} f(p, q_{\star}) \leq 2\epsilon$$

How are we going to find that solution

We consider the first-order query model.

We start with an unknown f from a known class \mathcal{F} .

Interaction protocol

In rounds $1, 2, \ldots, T$

- Learner forwards query (p, q)
- Learner receives **feedback** $(\nabla_p f(p,q), \nabla_q f(p,q))$

The learner outputs an ϵ -optimal saddle point (p_{\star}, q_{\star}) .

How are we going to find that solution

We consider the first-order query model.

We start with an unknown f from a known class \mathcal{F} .

Interaction protocol

In rounds $1, 2, \ldots, T$

- Learner forwards query (p, q)
- Learner receives **feedback** $(\nabla_p f(p,q), \nabla_q f(p,q))$

The learner outputs an ϵ -optimal saddle point (p_{\star}, q_{\star}) .

Query complexity

How many first-order queries are necessary and sufficient for a sequential learner to output an approximate saddle point for any $f \in \mathcal{F}$?

Making the question more tractable

Consider **special case** of **zero-sum matrix games** (bilinear functions over probability simplex):

$$\mathcal{P} = \mathcal{Q} = \triangle_{K}, \qquad \mathcal{F} = \left\{ f(p,q) = p^{\mathsf{T}} M q \mid M \in [\pm 1]^{K \times K} \right\}$$
$$(\nabla_{p} f(p,q), \nabla_{q} f(p,q)) = (Mq, M^{\mathsf{T}} p)$$

Making the question more tractable

Consider **special case** of **zero-sum matrix games** (bilinear functions over probability simplex):

$$\mathcal{P} = \mathcal{Q} = \triangle_{K}, \qquad \mathcal{F} = \left\{ f(p,q) = p^{\mathsf{T}} M q \mid M \in [\pm 1]^{K \times K} \right\}$$
$$(\nabla_{p} f(p,q), \nabla_{q} f(p,q)) = (Mq, M^{\mathsf{T}} p)$$

Algorithms since Brown (1951), up to Rakhlin and Sridharan (2013).

Lower bounds remain elusive.

⇒ Optimal query complexity unknown.

What is known: Upper Bounds

- **1951:** First iterative methods by Brown (1951) and Robinson (1951).
- **1999:** Freund and Schapire (1999) discovered the relation to Regret Bounds: Can compute an ϵ -Nash-equilibrium with T iterations, where

$$T = O\left(\frac{\log K}{\epsilon^2}\right)$$

2011: Daskalakis, Deckelbaum, and Kim (2011) can compute an ϵ -Nash-equilibrium with T iterations, where

$$T = O\left(\frac{f(K)}{\epsilon}\right)$$

2013: Rakhlin and Sridharan (2013) can compute an ϵ -Nash-equilibrium with T iterations, where

$$T = O\left(\frac{\log K}{\epsilon}\right)$$

What is known: Lower Bounds

2018: Ouyang and Xu (2021) Showed a lower bound on the query complexity for Saddle-Point Problems with curvature and rotationally invariant constraint sets.

2020: Ibrahim et al. (2020) adapted Nesterov's lower bound technique for games. This requires a two-step linear span assumption.

Our Results

Lower Bounds:

- ullet K-2 queries needed for learning **exact** $\epsilon=0$ equilibrium
- $\Omega\left(\frac{\log\frac{1}{\epsilon K}}{\log K}\right)$ queries required when $\epsilon \leq \frac{1}{K^4}$.

Upper Bounds:

• If entries in known countable set, say $M \in \mathbb{Q}^{K \times K}$, one query suffices.

Outline

- 1. Motivation
- 2. Upper Bounds
- 3. New Lower Bounds
- 4. State of the Art
- 5. Conclusion

Suppose $M_{ij} \in \{0, \dots, n-1\}$ for some $n \ge 1$.

Suppose $M_{ij} \in \{0, \dots, n-1\}$ for some $n \ge 1$.

Consider query (p,q) with p arbitrary and $q_j \propto n^{-j}$. Then the i^{th} entry of the feedback (to the p player) is

$$\nabla_{p} f(p,q)_{i} = \sum_{j=1}^{K} M_{ij} q_{j} \propto \sum_{j=1}^{K} M_{ij} n^{-j}$$

Suppose $M_{ij} \in \{0, \dots, n-1\}$ for some $n \ge 1$.

Consider query (p,q) with p arbitrary and $q_j \propto n^{-j}$. Then the i^{th} entry of the feedback (to the p player) is

$$\nabla_{p} f(p,q)_{i} = \sum_{j=1}^{K} M_{ij} q_{j} \propto \sum_{j=1}^{K} M_{ij} n^{-j}$$

This is the i^{th} row of M written in base n.

Suppose $M_{ij} \in \{0, \dots, n-1\}$ for some $n \ge 1$.

Consider query (p, q) with p arbitrary and $q_j \propto n^{-j}$. Then the i^{th} entry of the feedback (to the p player) is

$$\nabla_{p} f(p,q)_{i} = \sum_{j=1}^{K} M_{ij} q_{j} \propto \sum_{j=1}^{K} M_{ij} n^{-j}$$

This is the i^{th} row of M written in base n.

We recover the entire matrix in **one** query.

Suppose $M_{ij} \in \{0, \dots, n-1\}$ for some $n \ge 1$.

Consider query (p, q) with p arbitrary and $q_j \propto n^{-j}$. Then the i^{th} entry of the feedback (to the p player) is

$$\nabla_{p} f(p,q)_{i} = \sum_{j=1}^{K} M_{ij} q_{j} \propto \sum_{j=1}^{K} M_{ij} n^{-j}$$

This is the i^{th} row of M written in base n.

We recover the entire matrix in **one** query.

Theorem

One query suffices if entries M_{ij} in a known countable set.

Upshot

Ok, so we found some lame coding trick exploiting infinite-precision.

Upshot

Ok, so we found some lame coding trick exploiting infinite-precision.

Why is this **cool**?

Upshot

Ok, so we found some lame coding trick exploiting infinite-precision.

Why is this **cool**?

Existing lower bound techniques construct matrices with entries from a **finite alphabet**, and hence must be powerless.

- Nesterov-style lower bound (Ibrahim et al., 2020)
- Rademacher entries (Orabona and Pál, 2018)
- Reduction to hard combinatorial / submodular instance (Babichenko, 2016; Hart and Nisan, 2018)

Outline

- 1. Motivation
- 2. Upper Bounds
- 3. New Lower Bounds
- 4. State of the Art
- 5. Conclusion

The fully mixed case is nice. For then $Mq_\star=M^\intercal p_\star \propto 1.$

The fully mixed case is nice. For then $Mq_{\star}=M^{\intercal}p_{\star}\propto 1$.

We consider as our class of matrices perturbations of (scaled) identity I/K, for which saddle points are near uniform and fully mixed. So we do not hit the non-negativity constraints.

The fully mixed case is nice. For then $Mq_{\star}=M^{\intercal}p_{\star}\propto 1$.

We consider as our class of matrices perturbations of (scaled) identity I/K, for which saddle points are near uniform and fully mixed. So we do not hit the non-negativity constraints.

If the span of the feedback includes 1, then the learner knows an exact equilibrium.

The fully mixed case is nice. For then $Mq_{\star}=M^{\intercal}p_{\star}\propto 1$.

We consider as our class of matrices perturbations of (scaled) identity I/K, for which saddle points are near uniform and fully mixed. So we do not hit the non-negativity constraints.

If the span of the feedback includes 1, then the learner knows an exact equilibrium.

Our job is to sequentially respond to the queries in a consistent way, while keeping 1 $\frac{\text{outside}}{\text{far from}}$ the span of the feedback for as long as possible.

Technique

We work with matrices

$$\mathcal{B}_0 \; = \; \mathcal{B}_{\|\cdot\|_{1,\infty}} \left(\frac{I_K}{2}, \frac{1}{16K^2} \right) \; = \; \left\{ M \in [\pm 1]^{K \times K} \; \text{s.t.} \; \left| M_{ij} - \frac{\delta_{i=j}}{2} \right| \leq \frac{1}{16K^2} \right\}.$$

Any $M \in B_0$ has

- All equilibria of M are fully mixed
- Non-zero value $\min_p \max_q p^{\mathsf{T}} Mq > 0$.

Main Idea

Consider t rounds with queries

$$(p_s,q_s)_{s\leq t}$$

and feedback

$$(\ell_s^{(p)},\ell_s^{(q)})_{s\leq t}$$

Consistent matrices are

$$\mathcal{E}_t = \left\{ M \in B_0 \middle| M^\mathsf{T} p_s = \ell_s^{(q)} \text{ and } Mq_s = \ell_s^{(p)} \text{ for all } s \leq t \right\}$$

Key Insight

Lemma

Let (p,q) be a **common Nash equilibrium** for all $M \in \mathcal{E}_t \neq \emptyset$. Then $p \in \operatorname{Span}(p_{1:t})$ and $q \in \operatorname{Span}(q_{1:t})$.

Key Insight

Lemma

Let (p, q) be a common Nash equilibrium for all $M \in \mathcal{E}_t \neq \emptyset$. Then $p \in \text{Span}(p_{1:t})$ and $q \in \text{Span}(q_{1:t})$.

Proof.

Fix $M \in \mathcal{E}_t$. Let $\bar{p} = p - \mathsf{Proj}_{\mathsf{Span}(p_{1:t})}(p)$, and let $u_q \neq 0$ be orthogonal to $\mathsf{Span}(q_{1:t})$. Then $M' = M + \alpha \bar{p} u_q^\mathsf{T} \in \mathcal{E}_t$. But then

$$\mathbf{0} = (M - M')^{\mathsf{T}} p = \alpha(\bar{p}^{\mathsf{T}} p) u_q = \alpha \|\bar{p}\|^2 u_q$$

So $\bar{p} = 0$ and hence $p \in \mathsf{Span}(p_{1:t})$.

Key Insight

Lemma

Let (p, q) be a common Nash equilibrium for all $M \in \mathcal{E}_t \neq \emptyset$. Then $p \in \text{Span}(p_{1:t})$ and $q \in \text{Span}(q_{1:t})$.

Proof.

Fix $M \in \mathcal{E}_t$. Let $\bar{p} = p - \mathsf{Proj}_{\mathsf{Span}(p_{1:t})}(p)$, and let $u_q \neq 0$ be orthogonal to $\mathsf{Span}(q_{1:t})$. Then $M' = M + \alpha \bar{p} u_q^\intercal \in \mathcal{E}_t$. But then

$$\mathbf{0} = (M - M')^{\mathsf{T}} p = \alpha (\bar{p}^{\mathsf{T}} p) u_q = \alpha ||\bar{p}||^2 u_q$$

So $\bar{p} = 0$ and hence $p \in \mathsf{Span}(p_{1:t})$.

Under same assumption, $1 \in \text{Span}(\ell_{1:t}^{(p)}) \cap \text{Span}(\ell_{1:t}^{(q)})$.

Keeping 1 from the span of the feedback

Theorem

For $T \leq K - 2$ we can sequentially choose $M_t \in \mathcal{E}_t$ s.t. $1 \notin \mathsf{Span}(\ell_{1:T}^{(q)})$.

Keeping $\boldsymbol{1}$ from the span of the feedback

Theorem

For $T \leq K-2$ we can sequentially choose $M_t \in \mathcal{E}_t$ s.t. $1 \notin \mathsf{Span}(\ell_{1:T}^{(q)})$.

By induction on t.

For the base case, we pick here $M_0=0$ (in paper $M_0=I_K/2$).

If query in old span $p_{t+1} \in \text{Span}(p_{1:t})$, keep $M_{t+1} = M_t$. Else update

$$M_{t+1} = M_t + \frac{\bar{p}_{t+1}}{\|\bar{p}_{t+1}\|^2} u_t^\mathsf{T}$$
 where $\bar{p}_{t+1} = p_{t+1} - \mathsf{Proj}_{\mathsf{Span}(p_{1:t})}(p_{t+1})$

and $u_t \neq 0$ is orthogonal to $q_{1:t}$ and to the remainder $\bar{1}_t = 1 - \mathsf{Proj}_{\mathsf{Span}(\ell^{[q)})}(1)$. The feedback is

$$\ell_{t+1}^{(q)} = M_{t+1}p_{t+1} = M_tp_{t+1} + u_t = M_t\bar{p}_{t+1} + M_t(p_{t+1} - \bar{p}_{t+1}) + u_t$$

This is orthogonal to $\bar{\mathbf{1}}_t$. So $\bar{\mathbf{1}}_t$ orthogonal to $\mathsf{Span}(\ell_{1:t+1}^{(q)})$. If $1 \in \mathsf{Span}(\ell_{1:t+1}^{(q)})$, also $\bar{\mathbf{1}}_t \in \mathsf{Span}(\ell_{1:t+1}^{(q)})$ so $\bar{\mathbf{1}}_t = \mathbf{0}$. Contradiction. \square

Result

We can keep going until all dimensions are exhausted and we cannot pick u_t orthogonal to $\mathrm{Span}(q_{1:t},\bar{1}_t)$. We obtain

Theorem

The query complexity of learning the exact $\epsilon=0$ nash equilibrium in the first-order query model is $T\geq K-2$.

Our result for approximate $\epsilon>0$ equilibria is based on keeping $\left\|\mathbf{1}-\mathsf{Proj}_{\mathsf{Span}(\ell_{1:t}^{(q)})}(\mathbf{1})\right\|$ big (instead of non-zero).

Our result for approximate $\epsilon>0$ equilibria is based on keeping $\left\|\mathbf{1}-\mathsf{Proj}_{\mathsf{Span}(\ell_{1:t}^{(q)})}(\mathbf{1})\right\|$ big (instead of non-zero).

Lemma

We can ensure

$$\left\|1-\mathsf{Proj}_{\mathsf{Span}(\ell_{1:T}^{(g)})}(1)\right\|^2 \ \geq \ \mathcal{K}\left(\frac{1}{8\mathcal{K}T^2}\right)^{T+1}$$

Our result for approximate $\epsilon>0$ equilibria is based on keeping $\left\|\mathbf{1}-\mathsf{Proj}_{\mathsf{Span}(\ell_{1:t}^{(q)})}(\mathbf{1})\right\|$ big (instead of non-zero).

Lemma

We can ensure

$$\left\| 1 - \mathsf{Proj}_{\mathsf{Span}(\ell_{1:T}^{(q)})}(1) \right\|^2 \geq K \left(\frac{1}{8KT^2} \right)^{T+1}$$

Lemma

Tuning all ingredients gives query complexity lower bound

$$T \geq \frac{\log \frac{1}{K^4 \epsilon}}{\log K} \wedge K - 3$$

Our result for approximate $\epsilon>0$ equilibria is based on keeping $\left\|\mathbf{1}-\mathsf{Proj}_{\mathsf{Span}(\ell_{1:t}^{(q)})}(\mathbf{1})\right\|$ big (instead of non-zero).

Lemma

We can ensure

$$\left\| 1 - \mathsf{Proj}_{\mathsf{Span}(\ell_{1:T}^{(q)})}(1) \right\|^2 \geq \kappa \left(\frac{1}{8\kappa T^2} \right)^{T+1}$$

Lemma

Tuning all ingredients gives query complexity lower bound

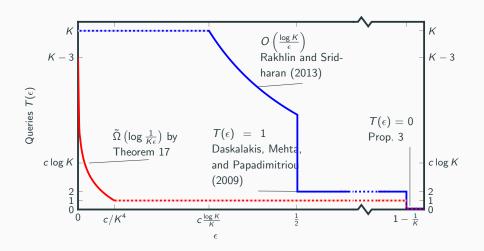
$$T \geq \frac{\log \frac{1}{K^4 \epsilon}}{\log K} \wedge K - 3$$

Constant for $\epsilon = \frac{1}{K^c}$. Insightful e.g. when $\epsilon = K^{-K}$.

Outline

- 1. Motivation
- 2. Upper Bounds
- 3. New Lower Bounds
- 4. State of the Art
- 5. Conclusion

What we have discussed



Outline

- 1. Motivation
- 2. Upper Bounds
- 3. New Lower Bounds
- 4. State of the Art
- 5. Conclusion

Conclusion

First non-trivial lower bounds.

Lots of open space.

Need even sharper techniques.

Thanks!

References i

- Babichenko, Y. (2016). "Query complexity of approximate Nash equilibria". In: Journal of the ACM (JACM) 63.4.
- Brown, G. W. (1951). "Iterative solution of games by fictitious play". In: Act. Anal. Prod Allocation 13.1.
- Daskalakis, C., A. Deckelbaum, and A. Kim (2011). "Near-optimal no-regret algorithms for zero-sum games". In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms. SIAM.
- Daskalakis, C., A. Mehta, and C. Papadimitriou (2009). "A note on approximate Nash equilibria". In: Theoretical Computer Science 410.17.
- Freund, Y. and R. E. Schapire (1999). "Adaptive game playing using multiplicative weights". In: Games and Economic Behavior 29.1-2.
- Hart, S. and N. Nisan (2018). "The query complexity of correlated equilibria". In: Games and Economic Behavior 108.

References ii

- Ibrahim, A., W. Azizian, G. Gidel, and I. Mitliagkas (2020). "Linear Lower Bounds and Conditioning of Differentiable Games". In:

 Proceedings of the 37th International Conference on Machine
 Learning, ICML 2020, 13-18 July 2020, Virtual Event. Vol. 119.

 Proceedings of Machine Learning Research.
- Orabona, F. and D. Pál (2018). "Scale-free online learning". In: Theoretical Computer Science 716. Special Issue on ALT 2015.
- Ouyang, Y. and Y. Xu (2021). "Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems". In: Mathematical Programming 185.1.
- Rakhlin, S. and K. Sridharan (2013). "Optimization, learning, and games with predictable sequences". In: Advances in Neural Information Processing Systems 26.
- Robinson, J. (1951). "An iterative method of solving a game".
 In: Annals of mathematics.