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Sneak preview of Question

What is the computational complexity (# linear optimisation oracle calls)

of approximately solving particular bilinear saddle point problems?



Motivation from Multi-Armed Bandits

Seminal Insight (Garivier and Kaufmann, 2016)

A good algorithm for Best Arm Identification must be solving

w∗ = argmax
w∈△K

min
λ∈Λ

K∑
k=1

wkd(µk , λk)

Explosion of bandit papers with analogous problems:

• Top-m 2017; 2017

• Spectral 2021

• Stratified 2021

• Lipschitz 2019

• Linear 2020; 2020

• Threshold 2017

• MaxGap 2019

• Duelling 2021

• Contextual 2020; 2020

• Pareto 2023

• Minimum 2018

• MCTS 2016

• Markov 2019

• Tail-Risk 2021

• MDP 2021



Motivation from Multi-Armed Bandits

Seminal Insight (Garivier and Kaufmann, 2016)

A good algorithm for Best Arm Identification must be solving

w∗ = argmax
w∈△K

min
λ∈Λ

K∑
k=1

wkd(µk , λk)

Explosion of bandit papers with analogous problems:

• Top-m 2017; 2017

• Spectral 2021

• Stratified 2021

• Lipschitz 2019

• Linear 2020; 2020

• Threshold 2017

• MaxGap 2019

• Duelling 2021

• Contextual 2020; 2020

• Pareto 2023

• Minimum 2018

• MCTS 2016

• Markov 2019

• Tail-Risk 2021

• MDP 2021



The core abstract problem

Given X ⊆ RK , consider the min-max problem

V ∗ := min
w∈△K

max
x∈X

w⊺x

Definition

A point w̃ ∈ △K is an ϵ-optimal solution if

max
x∈X

w̃⊺x ≤ V ∗ + ϵ

Min-max theorem

There exists a saddle point w∗ ∈ △K , x
∗ ∈ conv(X )

Problem

How to compute an ϵ-optimal point?
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A beautiful line of work

w1,w2, . . . ∈ △K x1,x2, . . . ∈ conv(X )

Idea: have one adversarial online learning algorithm choose

w1,w2, . . . ∈ △K , and another x1,x2, . . . ∈ conv(X ).

Standard regret bounds for learners imply

Theorem (Freund and Schapire, 1999)

Time-average of T iterates is an O(1/
√
T )-optimal saddle point.

Acceleration with optimistic learning (exploiting stability)

Theorem (Rakhlin and Sridharan, 2013; Abernethy et al., 2018)

Time-average of T iterates is an O(1/T )-optimal saddle point.
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Let’s Implement!

Online learning for wt ∈ △K : Optimistic Hedge algorithm

Online learning for xt ∈ conv(X ): Online Gradient Descent

Snag

OGD and friends require Euclidean projection onto conv(X ).

What access can we assume to X (or conv(X ))?

Common assumptions

• Small finite set / polytope / polyhedron

• Linear optimisation oracle ← this talk

c 7→ argmax
x∈conv(X )

x⊺c = argmax
x∈X

x⊺c

• Membership oracle for conv(X )
• Euclidean projection onto conv(X )
• . . .
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The Question

Given X ⊆ RK , consider the min-max problem

V ∗ := min
w∈△K

max
x∈X

w⊺x

Question

What is the oracle complexity of computing an ϵ-optimal point using

only linear optimisation access to X . In particular, is ϵ = O(1/
√
T ),

ϵ = O(1/T ) or else?



What about Frank-Wolfe?

Frank-Wolfe family of algorithms: ?

Learning/optimisation algorithms using only linear optimisation

• Online Frank Wolfe (Hazan and Kale, 2012) has slow adversarial

regret O(T 3/4).

• Faster rates for offline optimisation with smooth objective and/or

strongly convex domain.

• Need to study versions with optimism or clairvoyance

• Saddle point interaction is far from worst-case data



What about MetaGrad?

Best Response over X is a single linear optimisation call.

Partial Positive Result

MetaGrad vs Best Response gives a Õ(KT ) rate.

• Fast rate without stability. Fun!

• Expensive to compute: O(K 2) per iteration.

• Factor dimension (K ) should not be there.

O(K 2) computation between oracle calls also arises for cutting plane

methods (Ellipsoid, . . . )
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You are welcome to join

Stochastic

multi-armed bandits

Adversarial

online learning

Game theory

Optimisation⋆



Thanks!
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