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Today we are looking at

A. Al Marjani and A. Proutiere (2021). “Adaptive sampling for best policy identification in
Markov decision processes”. In: International Conference on Machine Learning. PMLR,
pp. 7459-7468



Outline

1. Setup
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Markov Decision Process

Finite sets of states S and actions A. Rewards bounded in [0, 1].

MDP ¢ = (pg, qy) specified by

e dynamics pg4(s’|s, a) and

e rewards gy(r|s, a).

We will write rg(s, a) for the mean reward (of doing a in s under ¢).
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Policies and their Performance

A policy is map 7 : S — A.

Executing a policy 7 from state s under ¢ gives a sequence (s )¢>o with
§ =5 and  shy ~ ps(c|sTia(s))

Let's introduce discount factor v € (0,1).

Value function of policy 7 in ¢:

Vi(s) = B [thras (stsm(st))

t=0

sg:s]

Optimal policy for ¢ is 7%(¢) = argmax V7 (NB: not a scalar(!))
mS—A



Problem in this talk @

Problem

Given any unknown MDP ¢, identify its optimal policy 7*(¢) from interactive exploration.

We want

e Reliability: output policy is indeed optimal

e Efficiency: as few samples as possible
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Interactive Exploration: Interaction with a generative model

Fix unknown MDP ¢.

Protocol (generative model)
fort=1,2,...,
e Learner picks state s; and action

o Learner observes reward ry ~ qg4(-|st, ar) and successor state s; ~ py(-|st, at)

Learner recommends policy

NB: different from navigation, where s; 1 = s;.

Definition (Correctness)
Fix confidence § € (0,1). A learner is d-correct if Py (7 # 7*(¢)) < 6.

Quest: efficiency

Minimise sample complexity ¢ — Eg[7] over all -correct learners.
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We Can Do It!

Rolling our own : concentration and perturbation

Uniform sampling: sample each pair (s, a) for n times. Concentration results say

e Estimate ry(s, a) up to precision 1/1/n.
e Estimate py(s'|s, a) up to precision 1//n for each s’.

The value function of 7 satisfies the recurrence
Vi(s) = rg(s,m(s +72p¢ '|s.7(s)) VE(s")

That is

1
Vi = ( vz% s'|s, m( ))esel,> Zesr¢(s,7r(s))
< 0(7mis)-

Obtain e-optimal policy in using O (62(157:)4 In(SA)) samples.

A perturbation argument gives ||V — VZr
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Instance-Optimal vs Worst-case Optimal

Theorem (Azar, Munos, and Kappen, 2013)
Can identify an e-optimal policy in samples

And no algorithm can do uniformly better. !
But maybe some MDPs ¢ are easy?

Can we have instance-dependent / instance-optimal results?
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In MDP ¢, the average total evidence collected against MDP 1) is

KL¢|w((5t7 at, Sty )11, 7Ar)
= ZE¢[Ns,a(7)]{KL(P¢(~Is, 3)[[pu(Cls, @) +KL(qs(ls, 2)]au(-Is,2)) }

- EW]Z%NS["’] {KL(paCIs, |pul-Is. ) + KL(sC ls,3) [au (15, 2)) }

Moreover, if Learner is d-correct and 7*(¢) # 7*(v)) then
. 1
KL¢‘¢((St,at,5£7rt);—:1,71'> > KL¢|¢(17}:,T*(¢)) > KL(]. — (S, (5) ~ In g

So all in all

Eolr] > "

1
s
wrgaA)éAwm*(%iQw*(@ ZWSQ{KL(p¢ Is,a)||py(-ls, a)) + KL(qs(:[s, a)||qu(:s, a))}

s,a
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Optimal Algorithm (Track-and-Stop template)

Can we have a single algorithm so that for all ¢,

In

e ) ws.aq KL(py(-|s, a
WEAsa pir* (1h)#£7* () Z s,a{ (p/(‘

Eglr] <

+tiny?

~— |l

(15, 2)) + KL(as( ls. @) [au(ls, ) }

s,a

Track and Stop

Fort=1,2,...

e Form estimate q@t of MDP

e Compute oracle weights w*(¢.).

e Track w* with sub-linear forced exploration.

e Stop/recommend using GLRT (generalised likelihood ratio test).

Analysis: as t — oo, then ¢, — ¢ hence w*(¢;) — w*(¢) and we stop at optimal time + tiny.



Conclusion

The instance dependent problem complexity of MDPs is (apparently)
1

N S Z ws,o{ KL (s (15, 3)||pu(1s @) + KL(as(:Is; a)[|au(-Is. 2)) }

as lower and upper bounds match.
Algorithmics not settled.

Current algorithms target relaxations instead.



Thanks!
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