Luckiness in Multi-Scale Online Learning

Wouter M. Koolen

2nd AI & Mathematics workshop University of Twente Friday 2nd June, 2023

Muriel Felipe Pérez-Ortiz PhD student at CWI

1. Motivation

2. Theory

3. Application

Motivating Example

Every week I face the choice

Motivating Example

Every week I face the choice

I want:

- Total travel time \leq best fixed carrier + small learning overhead
- By choosing my carrier adaptively (possibly randomised)
- With full information of past service
- Without relying on i.i.d. assumption

Why is this important/interesting

- Fundamental problem with strong connections to
 - martingale deviation inequalities
 - convex optimisation and duality
 - (stochastic) gradient descent
 - uncertainty quantification
 - bandit problems (partial information)
 - reinforcement learning
 - game theory (saddle point computation)
 - differential privacy
 - Boosting
 - ...

Why is this important/interesting

- Fundamental problem with strong connections to
 - martingale deviation inequalities
 - convex optimisation and duality
 - (stochastic) gradient descent
 - uncertainty quantification
 - bandit problems (partial information)
 - reinforcement learning
 - game theory (saddle point computation)
 - differential privacy
 - Boosting
 - ...
- Theory well-developed for single loss scale. (Freund and Schapire, 1997; De Rooij et al., 2014; Koolen, Grünwald, and Van Erven, 2016)

Why is this important/interesting

- Fundamental problem with strong connections to
 - martingale deviation inequalities
 - convex optimisation and duality
 - (stochastic) gradient descent
 - uncertainty quantification
 - bandit problems (partial information)
 - reinforcement learning
 - game theory (saddle point computation)
 - differential privacy
 - Boosting
 - ...
- Theory well-developed for single loss scale. (Freund and Schapire, 1997; De Rooij et al., 2014; Koolen, Grünwald, and Van Erven, 2016)
- Similar treatment for multi-scale was lacking.
 - Existing algorithm templates too rigid
 - No multi-scale Bernstein Inequality

- Receive batch of i.i.d. labelled examples
- Output predictor for new data (e.g. by ERM)
- Prove risk bound using concentration (PAC, VC dim)

- Receive batch of i.i.d. labelled examples
- Output predictor for new data (e.g. by ERM)
- Prove risk bound using concentration (PAC, VC dim)

What is **Online Learning**

- Cancel the i.i.d. assumption (\Rightarrow adversary)
- Algorithm predicts/updates sequentially (e.g. by online gradient descent)
- Prove regret bound using game theory (minimax)

- Receive batch of i.i.d. labelled examples
- Output predictor for new data (e.g. by ERM)
- Prove risk bound using concentration (PAC, VC dim)

What is Online Learning

- Cancel the i.i.d. assumption (\Rightarrow adversary)
- Algorithm predicts/updates sequentially (e.g. by online gradient descent)
- Prove regret bound using game theory (minimax)

We say a single algorithm exploits Luckiness if

- Regret bounded (by minimax rate)
- Risk bounded by fast rate if i.i.d. with margin

- Receive batch of i.i.d. labelled examples
- Output predictor for new data (e.g. by ERM)
- Prove risk bound using concentration (PAC, VC dim)

What is Online Learning

- Cancel the i.i.d. assumption (\Rightarrow adversary)
- Algorithm predicts/updates sequentially (e.g. by online gradient descent)
- Prove regret bound using game theory (minimax)

We say a single algorithm exploits Luckiness if

- Regret bounded (by minimax rate)
- Risk bounded by fast rate if i.i.d. with margin

A learning problem is Multi-Scale if

• range of losses varies wildly between predictions

The learner is uncertain about the overall best predictor.

Need to maintain uncertainty. Vague: many implementations.

Online learning provides a crisp framework with a scalar objective.

Hence it informs us about optimal/good/appropriate ways to maintain uncertainty.

The answer is far from Bayesian (or perhaps profound generalisation)

1. Motivation

2. Theory

3. Application

Formal Setup

Fix number K of actions with loss ranges $\sigma \in [0,\infty)^{K}$

Protocol

for t = 1, 2, ...

- Learner picks probability distribution $w_t \in riangle_{\mathcal{K}}$ on actions
- Adversary sets action losses $\ell_t \in \mathbb{R}^K$ with $|\ell_t^k| \leq \sigma_k$
- Learner incurs expected loss $w_t^{\mathsf{T}} \ell_t$

Formal Setup

Fix number K of actions with loss ranges $\sigma \in [0,\infty)^{K}$

Protocol

for t = 1, 2, ...

- Learner picks probability distribution $w_t \in riangle_{\mathcal{K}}$ on actions
- Adversary sets action losses $\ell_t \in \mathbb{R}^K$ with $|\ell_t^k| \leq \sigma_k$
- Learner incurs expected loss $w_t^{\mathsf{T}} \ell_t$

Definition (Regret)

The **regret** after T rounds with respect to action k is

$$R_T^k = \sum_{t=1}^T w_t^\mathsf{T} \ell_t - \sum_{t=1}^T \ell_t^k$$

Formal Setup

Fix number K of actions with loss ranges $\sigma \in [0,\infty)^K$

Protocol

for t = 1, 2, ...

- Learner picks probability distribution $w_t \in riangle_{\mathcal{K}}$ on actions
- Adversary sets action losses $\ell_t \in \mathbb{R}^K$ with $|\ell_t^k| \leq \sigma_k$
- Learner incurs expected loss $w_t^{\mathsf{T}} \ell_t$

Definition (Regret)

The **regret** after T rounds with respect to action k is

$$R_T^k = \sum_{t=1}^T w_t^\mathsf{T} \ell_t - \sum_{t=1}^T \ell_t^k$$

Question

Can Learner keep $R_T^k \leq \sigma_k \sqrt{T}$?

First Step

Consider Follow-the-Regularised-Leader (FTRL) template

$$egin{array}{rcl} m{w}_t &=& rgmin_{m{w}\in riangle \kappa} & \langlem{w},m{L}_{t-1}
angle + m{ heta}_{m{\eta}}(m{w},m{u}) \end{array}$$

with cumulative losses $L_t = \sum_{s=1}^t \ell_s$ and multi-scale entropy

$$D_{\eta}(w,u) = \sum_{k} \frac{w_{k} \ln \frac{w_{k}}{u_{k}} - w_{k} + u_{k}}{\eta_{k}}$$

First Step

Consider Follow-the-Regularised-Leader (FTRL) template

$$oldsymbol{w}_t = rgmin_{oldsymbol{w}\in riangle_{K}} \langle oldsymbol{w}, oldsymbol{L}_{t-1}
angle + oldsymbol{\mathcal{D}}_{oldsymbol{\eta}}(oldsymbol{w},oldsymbol{u})$$

with cumulative losses $L_t = \sum_{s=1}^t \ell_s$ and multi-scale entropy

$$D_{\eta}(w,u) = \sum_{k} \frac{w_k \ln \frac{w_k}{u_k} - w_k + u_k}{\eta_k}$$

Theorem (Bubeck et al., 2019)

FTRL with learning rate $\eta_k = \frac{1}{\sigma_k} \sqrt{\frac{2 \ln K}{T}}$ has regret bounded by

$$R_T^k \leq \sigma_k \sqrt{T \ln K}.$$

Matching worst-case regret lower bound.

Luckiness?

What if losses ℓ_1, ℓ_2, \ldots turn out to be i.i.d. after all?

Luckiness?

What if losses ℓ_1, ℓ_2, \ldots turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness?

What if losses ℓ_1, ℓ_2, \ldots turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin? Losses sampled i.i.d. $\ell_t \sim \mathbb{P}$, where mean loss vector $\mu = \mathbb{E}[\ell]$ exhibits positive gap $\Delta = \mu_{(2)} - \mu_{(1)} > 0$

Luckiness?

What if losses ℓ_1, ℓ_2, \ldots turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin? Losses sampled i.i.d. $\ell_t \sim \mathbb{P}$, where mean loss vector $\mu = \mathbb{E}[\ell]$ exhibits positive gap $\Delta = \mu_{(2)} - \mu_{(1)} > 0$

Still no cigar. $\Omega(\sqrt{T})$ regret.

Luckiness?

What if losses ℓ_1, ℓ_2, \ldots turn out to be i.i.d. after all?

Actually, the worst-case lower bound example is of that kind.

Luckiness with Margin?

Losses sampled i.i.d. $\ell_t \sim \mathbb{P}$, where mean loss vector $\mu = \mathbb{E}[\ell]$ exhibits positive gap $\Delta = \mu_{(2)} - \mu_{(1)} > 0$

Still no cigar. $\Omega(\sqrt{T})$ regret.

Strong Contrast

For same-scale case there is a single algorithm with

- Worst-case regret $\sqrt{T \ln K}$ (matching lower bound)
- Stochastic+gap regret $O(1/\Delta)$, a constant(!)
- Interpolates spectrum by data-dependent $\sqrt{V_T \ln K}$ bound.

Main Result

Muscada Algorithm

$$egin{array}{lll} m{w}_t &\coloneqq rgmin_{m{w}\in riangle_{K}} & \langle m{w}, m{L}_{t-1} + m{\mu}_{t-1}
angle + m{D}_{m{\eta}_{t-1}} egin{array}{lll} m{w}, m{u} \end{pmatrix} \end{array}$$

where

$$\mu_t^k = \sigma_k \sqrt{v_t \ln K}$$

$$v_t = 4 \sum_{s=1}^t \frac{\operatorname{var}_{\tilde{w}_s}(\ell_s)}{\langle \tilde{w}_s, \sigma^2 \rangle} \quad \text{with} \quad \tilde{w}_t^k \propto w_t^k \eta_{t-1}^k$$

$$\eta_t^k = \frac{1}{\sigma_k} \sqrt{\frac{2 \ln K}{v_t}}$$

Main Result

Muscada Algorithm

$$egin{array}{lll} m{w}_t &\coloneqq rgmin_{m{w}\in riangle_{K}} & \langle m{w}, m{L}_{t-1} + m{\mu}_{t-1}
angle + m{D}_{m{\eta}_{t-1}} egin{array}{lll} m{w}, m{u} \end{pmatrix} \end{array}$$

where

$$\mu_t^k = \sigma_k \sqrt{v_t \ln K}$$

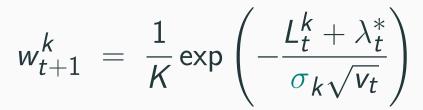
$$v_t = 4 \sum_{s=1}^t \frac{\operatorname{var}_{\tilde{w}_s}(\ell_s)}{\langle \tilde{w}_s, \sigma^2 \rangle} \quad \text{with} \quad \tilde{w}_t^k \propto w_t^k \eta_{t-1}^k$$

$$\eta_t^k = \frac{1}{\sigma_k} \sqrt{\frac{2 \ln K}{v_t}}$$

Theorem (Main Result)

Muscada guarantees $R_T^k \leq \mu_T^k$.

- Sharpens worst-case regret bound of Bubeck et al. 2019 as $v_t \leq t$.
- In i.i.d. setting with gap Δ , expected regret is constant $\mathbb{E}[\mu_T^{k^*}] \leq \frac{\kappa \sigma_{\max}^2}{\Delta}$



where λ_t^* ensures normalisation



where λ_t^* ensures normalisation

- More loss, less weight
- Evidence in loss decays with "time" v_t
- Loss and normalisation λ_t^* affects large scales σ_k less.

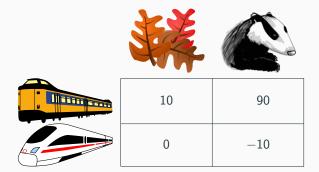
1. Motivation

2. Theory

3. Application

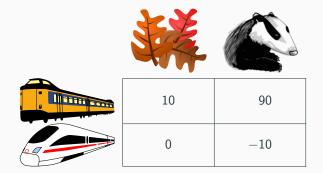
Saddle Point Computation

Now suppose I am paranoid about travel time.



Saddle Point Computation

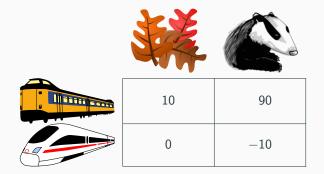
Now suppose I am paranoid about travel time.



What is the saddle point? (Hint: it is pure)

Saddle Point Computation

Now suppose I am paranoid about travel time.



What is the saddle point? (Hint: it is pure)

Multi-scale: 📭 and 🌊 of scale 90 while 🔗 and 🗰 of scale 10.

Problem

Given (large) payoff matrix M. Compute an ϵ -equilibrium (p,q):

$$\max_{j} p^{\mathsf{T}} M e_{j} - \min_{i} e_{i}^{\mathsf{T}} M q \leq \epsilon.$$

Popular approach (Freund and Schapire, 1999) Run online learners p_t and q_t on loss vectors Mq_t and $-M^{\intercal}p_t$.

Problem

Given (large) payoff matrix M. Compute an ϵ -equilibrium (p,q):

$$\max_{j} p^{\mathsf{T}} M e_{j} - \min_{i} e_{i}^{\mathsf{T}} M q \leq \epsilon.$$

Popular approach (Freund and Schapire, 1999) Run online learners p_t and q_t on loss vectors Mq_t and $-M^{T}p_t$.

Question

Does multi-scale knowledge help?

Problem

Given (large) payoff matrix M. Compute an ϵ -equilibrium (p,q):

$$\max_{j} p^{\mathsf{T}} M e_{j} - \min_{i} e_{i}^{\mathsf{T}} M q \leq \epsilon.$$

Popular approach (Freund and Schapire, 1999) Run online learners p_t and q_t on loss vectors Mq_t and $-M^{T}p_t$.

Question

Does multi-scale knowledge help?

Yes, sub-optimality gap improves from σ_{\max}/\sqrt{T} to $\sigma_{\text{saddle-point}}/\sqrt{T}$.

With optimism (Rakhlin and Sridharan, 2013), empirically $\sigma_{\text{saddle-point}}/T$.

Thanks!

References i

- Bubeck, S., N. R. Devanur, Z. Huang, and R. Niazadeh (2019). "Multi-scale Online Learning: Theory and Applications to Online Auctions and Pricing". In: Journal of Machine Learning Research 20.62, pp. 1–37.
- Freund, Y. and R. E. Schapire (1999). "Adaptive game playing using multiplicative weights". In: Games and Economic Behavior 29.1-2, pp. 79–103.
- (Aug. 1997). "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting". en. In: Journal of Computer and System Sciences 55.1, pp. 119–139.
- Koolen, W. M., P. D. Grünwald, and T. van Erven (Dec. 2016).
 "Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning". In: Advances in Neural Information Processing Systems (NeurIPS) 29, pp. 4457–4465.

Rakhlin, S. and K. Sridharan (2013). "Optimization, Learning, and Games with Predictable Sequences". In: Advances in Neural Information Processing Systems. Vol. 26. Curran Associates, Inc.
 de Rooij, S., T. van Erven, P. D. Grünwald, and W. M. Koolen (Apr. 2014). "Follow the Leader If You Can, Hedge If You Must". In: Journal of Machine Learning Research 15, pp. 1281–1316.