
Game AI & Search

Wouter M. Koolen

2023-03-30

CWI & UT

1

Credentials

• Quarto

• Quoridor

• Scrabble

• some research papers on learning

2

Why are we here today?

Games

• Games as objects for studying learning about

• Game theory/methods as engines driving learning methods

3

PAC Learning

Definition of Learning

Suitable for passive and interactive learning

5

Definition of Learning [Valiant’84]

• Start with any computational problem. (However simple)
• Sorting

• Shortest path in graph, planning in MDP

• Least squares, curve fitting

• Saddle point (of matrix game)

• Backward induction (of game DAG)

• Linear / convex / submodular optimisation

• . . .

•
Argmax of finite dimensional vector:

Given µ ∈ RK compute argmaxµk .

• Give the learner noisy access to the inputs
• Pick µi = Eνi [Xi]. Provide samples X1,X2, . . . i.i.d. from νi .

• (Active learning) Let the learner choose experiments

• Learner must return an ϵ-optimal solution w.p. 1− δ

• Questions: statistics (# samples), computation (algorithm design)

6

Definition of Learning [Valiant’84]

• Start with any computational problem. (However simple)
• Sorting

• Shortest path in graph, planning in MDP

• Least squares, curve fitting

• Saddle point (of matrix game)

• Backward induction (of game DAG)

• Linear / convex / submodular optimisation

• . . .

•
Argmax of finite dimensional vector:

Given µ ∈ RK compute argmaxµk .

• Give the learner noisy access to the inputs
• Pick µi = Eνi [Xi]. Provide samples X1,X2, . . . i.i.d. from νi .

• (Active learning) Let the learner choose experiments

• Learner must return an ϵ-optimal solution w.p. 1− δ

• Questions: statistics (# samples), computation (algorithm design)

6

Definition of Learning [Valiant’84]

• Start with any computational problem. (However simple)
• Sorting

• Shortest path in graph, planning in MDP

• Least squares, curve fitting

• Saddle point (of matrix game)

• Backward induction (of game DAG)

• Linear / convex / submodular optimisation

• . . .

•
Argmax of finite dimensional vector:

Given µ ∈ RK compute argmaxµk .

• Give the learner noisy access to the inputs
• Pick µi = Eνi [Xi]. Provide samples X1,X2, . . . i.i.d. from νi .

• (Active learning) Let the learner choose experiments

• Learner must return an ϵ-optimal solution w.p. 1− δ

• Questions: statistics (# samples), computation (algorithm design)

6

Definition of Learning [Valiant’84]

• Start with any computational problem. (However simple)
• Sorting

• Shortest path in graph, planning in MDP

• Least squares, curve fitting

• Saddle point (of matrix game)

• Backward induction (of game DAG)

• Linear / convex / submodular optimisation

• . . .

•
Argmax of finite dimensional vector:

Given µ ∈ RK compute argmaxµk .

• Give the learner noisy access to the inputs
• Pick µi = Eνi [Xi]. Provide samples X1,X2, . . . i.i.d. from νi .

• (Active learning) Let the learner choose experiments

• Learner must return an ϵ-optimal solution w.p. 1− δ

• Questions: statistics (# samples), computation (algorithm design) 6

My Interest

PAC learning puts forward crisp objective metrics for judging learning algorithms.

• Approximation error: ϵ

• Confidence: δ

• Sample complexity: m

• Computational complexity: O(n)

So we can reason about optimality in handling:

• Features of original computational problem

• Shape constraints assumptions (between means)

• (Non-)parametric assumptions on sampling processes

• Constraints on experiments

• Strategies/templates for dealing with uncertainty, “inference”

7

My Interest

PAC learning puts forward crisp objective metrics for judging learning algorithms.

• Approximation error: ϵ

• Confidence: δ

• Sample complexity: m

• Computational complexity: O(n)

So we can reason about optimality in handling:

• Features of original computational problem

• Shape constraints assumptions (between means)

• (Non-)parametric assumptions on sampling processes

• Constraints on experiments

• Strategies/templates for dealing with uncertainty, “inference”

7

Why Games, Then?

Games provide a series of natural problems

• Beyond convex hull of what we know how to do ⇒ Challenging

• Yet with hint of mathematical tractability ⇒ Ripe

• Applications plentiful ⇒ Useful

Best first move, PV, saddle point, value

• Learning and Games: cross fertilization

• Learning results inspire systems

• Ambition to explain success of current game systems

8

Why Games, Then?

Games provide a series of natural problems

• Beyond convex hull of what we know how to do ⇒ Challenging

• Yet with hint of mathematical tractability ⇒ Ripe

• Applications plentiful ⇒ Useful

Best first move, PV, saddle point, value

• Learning and Games: cross fertilization

• Learning results inspire systems

• Ambition to explain success of current game systems

8

Why Games, Then?

Games provide a series of natural problems

• Beyond convex hull of what we know how to do ⇒ Challenging

• Yet with hint of mathematical tractability ⇒ Ripe

• Applications plentiful ⇒ Useful

Best first move, PV, saddle point, value

• Learning and Games: cross fertilization

• Learning results inspire systems

• Ambition to explain success of current game systems

8

Tree Search

Deterministic Problem

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN

Problem
Given leaf values µ, compute i∗(µ) := argmax

a1
min
a2

max
a3

min
a4

µa1a2a3a4
9

Backward Induction Computation

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN

10

Backward Induction Computation

4

4

4

4

5 4

2

4 2

5

1

1 7

5

8 5

3

3

3

3 4

2

2 6

8

1

8 1

8

9 8

MAX MIN

10

Alpha-beta Pruning

5 4 4 1 7 8 5 3 2

MAX MIN

11

Model (Teraoka, Hatano, and Takimoto, 2014)

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN µ is N (µ, 1)

Maximin Action Identification Problem
Find best move at root from samples of leaves.

guarantee?

12

Model (Teraoka, Hatano, and Takimoto, 2014)

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN µ is N (µ, 1)

Maximin Action Identification Problem
Find best move at root from samples of leaves. guarantee?

12

Model

Definition

A game tree is a min-max tree with leaves L. A bandit model µ assigns a

distribution µℓ to each leaf ℓ ∈ L.

The maximin action (best action at the root) is

i∗(µ) := argmax
a1

min
a2

max
a3

min
a4

· · · µa1a2a3a4...

Protocol

For t = 1, 2, . . . , τ :

• Learner picks a leaf Lt ∈ L.
• Learner sees Xt ∼ µLt

Learner recommends action Î

13

Model

Definition

A game tree is a min-max tree with leaves L. A bandit model µ assigns a

distribution µℓ to each leaf ℓ ∈ L.

The maximin action (best action at the root) is

i∗(µ) := argmax
a1

min
a2

max
a3

min
a4

· · · µa1a2a3a4...

Protocol

For t = 1, 2, . . . , τ :

• Learner picks a leaf Lt ∈ L.
• Learner sees Xt ∼ µLt

Learner recommends action Î

13

Model

Definition

A game tree is a min-max tree with leaves L. A bandit model µ assigns a

distribution µℓ to each leaf ℓ ∈ L.

The maximin action (best action at the root) is

i∗(µ) := argmax
a1

min
a2

max
a3

min
a4

· · · µa1a2a3a4...

Protocol

For t = 1, 2, . . . , τ :

• Learner picks a leaf Lt ∈ L.
• Learner sees Xt ∼ µLt

Learner recommends action Î 13

Objectives

Learner is δ-PAC if

∀µ : P
µ

(
τ < ∞∧ Î ̸= i∗(µ)

)
≤ δ

Goal: minimise sample complexity Eµ[τ] over all δ-PAC strategies.

14

Main Theorem I: Lower Bound

Define the alternatives to µ by Alt(µ) = {λ|i∗(λ) ̸= i∗(µ)}.
NB here i∗ is best action at the root

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

Eµ[τ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi).

15

Main Theorem I: Lower Bound

Define the alternatives to µ by Alt(µ) = {λ|i∗(λ) ̸= i∗(µ)}.
NB here i∗ is best action at the root

Theorem (Castro 2014; Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

Eµ[τ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi).

15

Main Theorem II: Algorithm

Idea is consider the oracle weight map

w∗(µ) := argmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi)

and track the plug-in estimate: sample leaf Lt ∼ w∗(µ̂(t − 1)).

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then µ 7→ w∗(µ) is

upper-hemicontinuous and convex-valued. Suitable tracking ensures that as

µ̂(t) → µ, any choice wt ∈ w∗(µ̂(t − 1)) have

min
w∈w∗(µ)

∥wt −w∥∞ → 0

Track-and-Stop is asymptotically optimal: lim supδ→0
Eµ[τ]

ln 1
δ

= T ∗(µ).

16

Main Theorem II: Algorithm

Idea is consider the oracle weight map

w∗(µ) := argmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi)

and track the plug-in estimate: sample leaf Lt ∼ w∗(µ̂(t − 1)).

Theorem (Degenne and Koolen, 2019)

Take set-valued interpretation of argmax defining w∗. Then µ 7→ w∗(µ) is

upper-hemicontinuous and convex-valued. Suitable tracking ensures that as

µ̂(t) → µ, any choice wt ∈ w∗(µ̂(t − 1)) have

min
w∈w∗(µ)

∥wt −w∥∞ → 0

Track-and-Stop is asymptotically optimal: lim supδ→0
Eµ[τ]

ln 1
δ

= T ∗(µ).
16

Example with oracle weights

5 4 4 2 1 7 8 5 3 4 2 6 8 1 9 8

MAX MIN µ is N (µ, 1)
17

On Computation

To compute a gradient (in w) we need to differentiate

w 7→ min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi)

An optimal λ ∈ Alt(µ) can be found by binary search for common value plus tree

reasoning in O(|L|).

18

AI

But where do we put the AI?

One possible answer:

End-to-End-Deep-Learning
Excellent performance at relatively little understanding. (Silver et al., 2017)

Another possible answer:

Algorithms with Predictions
Heuristics and guarantees can typically be combined.

• Algorithm with worst-case performance guarantee . . .

• . . . that improves whenever predictions are good

• Example: node ordering for (α, β) pruning.

19

Open Problems

Problem: Multiple answers and ϵ > 0

We have seen Best Action Identification. Instance of PAC learning with ϵ = 0.

Lower bound complexity essentially governed by certain gaps between leaf means.

We can learn faster if we accept any ϵ-optimal move.

Theory currently underdeveloped:

• Asymptotic optimality as δ → 0 results exist (Degenne and Koolen, 2019) but are

of questionable practicality.

• My perspective: lower bounds need sharpening

• Practical schemes based on confidence intervals Kaufmann and Koolen, 2017

Problem
What is the sample complexity of ϵ Best Action Identification?

20

Problem: Cyclic game graphs

Consider a two-player zero-sum cyclic game graph.

1

-1

-1

1

you are here

Convention: cycling forever results in value 0.

Problem
What is the sample complexity of finding the best move in a cyclic game?

21

Problem: Facing the Curse of Dimensionality

Game trees are intractably big. Practical systems (Silver et al., 2017)

• Progressively expand strategic horizon

• Cluster similar nodes

• Exploit background knowledge

•

22

Problem: Mixtures and ϵ > 0

With Julia Olkovskaya (in progress) we found an intriguing possibility.

Observation
In bandits, it appears much easier to find a ϵ-good mixture of arms than to find a

individual ϵ best arm.

• Statistics improve

• Computation streamlines

Problem
What is the sample complexity of ϵ- Best Mixture of Actions Identification?

23

Problem: Oracle Strategy Computation

Algorithms based on lower bound problems of the form

argmax
w∈△K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi∥λi)

With the underlying deterministic problem determining what Alt means.

Problem
As a function of Alt, what is the computational complexity of optimisation of the

above objective?

Gradient descent vs cutting plane vs interior point methods? Can we do Nesterov

acceleration? Scaling with the dimension K and perhaps the problem rank (Kaufmann

and Koolen, 2021)?

24

Conclusion

Games and Learning fertile research areas with interesting, challenging, promising

intersection.

25

References

Castro, R. M. (Nov. 2014). “Adaptive sensing performance lower bounds for sparse

signal detection and support estimation”. In: Bernoulli 20.4, pp. 2217–2246.

Degenne, R. and W. M. Koolen (Dec. 2019). “Pure Exploration with Multiple

Correct Answers”. In: Advances in Neural Information Processing Systems

(NeurIPS) 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,

E. Fox, and R. Garnett. Curran Associates, Inc., pp. 14591–14600.

Garivier, A. and E. Kaufmann (2016). “Optimal Best arm Identification with Fixed

Confidence”. In: Proceedings of the 29th Conference On Learning Theory (COLT).

Kaufmann, E. and W. M. Koolen (Nov. 2021). “Mixture Martingales Revisited

with Applications to Sequential Tests and Confidence Intervals”. In: Journal of

Machine Learning Research 22.246, pp. 1–44.

26

Kaufmann, E. and W. M. Koolen (Dec. 2017). “Monte-Carlo Tree Search by Best

Arm Identification”. In: Advances in Neural Information Processing Systems

(NeurIPS) 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, pp. 4904–4913.

Silver, D. et al. (Oct. 2017). “Mastering the game of Go without human

knowledge”. In: Nature 550, pp. 354–359.

Teraoka, K., K. Hatano, and E. Takimoto (2014). “Efficient Sampling Method for

Monte Carlo Tree Search Problem”. In: IEICE Transactions 97-D.3, pp. 392–398.

27

	Why are we here today?
	PAC Learning
	Tree Search
	Deterministic Problem
	Learning Problem

	AI
	Open Problems
	References

