A Composite Ville's Inequality and SLLNs

Wouter M. Koolen INRIA Seminar, Sep 5, 2022

CWI and University of Twente

Team Effort

Johannes Ruf

Martin Larsson

Aaditya Ramdas

Menu

1. Introduction

- 2. Composite Upgrade
- 3. Examples

Bernoulli (Positive) Example

Truncated Cauchy (Negative) Example

Uniform Strong Law (Positive) Example

4. Conclusion

Introduction

Starting point: Ville's Result

Fix filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n)_n, P)$ and (tail) event $A \in \mathcal{F}$. Then

Theorem

P(A) = 0 iff there is a test martingale $(M_n)_n$ for P tending to ∞ on A.

Why is that useful

If P is true and P(A) = 0 then A will not happen.

A martingale $(M_n)_n$ diverging on A allows detecting A in finite time with Type-1 error control.

To do so, we declare A is happening at $\tau = \inf\{n \mid M_n \ge 1/\alpha\}$.

- If A happens, we detect it for sure
- Under P, probability of (false) detection is $\leq \alpha$.

Definition

A stopping time τ detects the event $A \in \mathcal{F}$ in finite time with confidence α if $A \subseteq \{\tau < \infty\}$ and $P\{\tau < \infty\} \leq \alpha$.

Examples of Ville's result

For i.i.d. Bernoulli(1/2), can detect in finite time:

• SLLN: running average converges to $1/2\,$

• LIL: deviations from
$$1/2$$
 of order $\sqrt{\frac{\ln \ln n}{n}}$

• ...

Composite Upgrade

Question

Suppose we face i.i.d. Bernoulli(p) for unknown $p \in [0, 1]$.

The running average of outcomes will converge.

But can we detect divergence in finite time?

For each fixed p there is a divergence detector.

But it may never happen that all detectors fire.

We are interested in a composite null \mathcal{P} .

We say event A is \mathcal{P} -polar if P(A) = 0 for all $P \in \mathcal{P}$.

Maybe

Conjecture

A is \mathcal{P} -polar iff there is a \mathcal{P} -test (super)martingale tending to ∞ on A.

But the universe says no.

Fundamental Problems

Some $\mathcal{P}\text{-polar}$ sets

- are finite-time detectable, but not by \mathcal{P} -(super)martingales.
- are not finite-time detectable at all.

Example

Let $\mathcal{P} = \{P_n \mid n \in \mathbb{N}\}$, where P_n deterministically outputs sequence $0^n \cdot 1 \cdot 0^{\mathbb{N}}$

Let $A = \{0^{\mathbb{N}}\}$, so A is \mathcal{P} -polar.

Any purported finite-time detection of A must occur seeing some prefix 0^m .

But then $P_n(\text{detection}) = 1$ for all $n \ge m$. No error control

Successful attempt

Definition

Non-negative $(E_n)_n$ is an E-process for \mathcal{P} if

```
\mathbb{E}_{P}\left[ \mathcal{E}_{	au}
ight] \leq1 for any P\in\mathcal{P} and stopping time 	au
```

Let's define the minimax finite-time detection probability:

Definition

$$\mu^*(A) = \inf_{ au \in \mathcal{T}: A \subseteq \{ au < \infty\}} \sup_{P \in \mathcal{P}} P(au < \infty)$$

We show

Theorem

 $\mu^*(A) = 0$ iff there is an E-process for \mathcal{P} tending to ∞ on A.

Examples

We focus on X_1, X_2, \ldots i.i.d. from $P \in \mathcal{P}$ for different composite \mathcal{P} . We write $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ for the running average.

We focus on the event

$$A_{\mathsf{div}} = \left\{ \mathsf{the limit} \lim_{n \to \infty} \bar{X}_n \mathsf{ does not exist} \right\}$$

Divergence

 \bar{X}_n diverges iff there are rational l < u s.t. both $\bar{X}_n \leq l$ and $\bar{X}_n \geq u$ infinitely often.

Examples

Bernoulli (Positive) Example

Question

Let

$$\mathcal{P} = \{P|P \text{ is i.i.d. Bernoulli}\}$$

Recall $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$. Consider the event

 $A_{\text{div}} = \{\bar{x}_n \text{ does not converge}\}$

Question

Let

$$\mathcal{P} = \{P|P \text{ is i.i.d. Bernoulli}\}$$

Recall $\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$. Consider the event

 $A_{\text{div}} = \{\bar{x}_n \text{ does not converge}\}$

E-process diverging on A_{div}?

Bernoulli E-process explicit construction: E-values

For i.i.d. Bernoulli p $1 + \beta(x - p)$

is a E-value for p as long as $\frac{-1}{1-p} \leq \beta \leq \frac{1}{p}$.

Bernoulli E-process explicit construction: E-values

For i.i.d. Bernoulli p

$$1 + \beta(x - p)$$

is a E-value for p as long as $\frac{-1}{1-p} \le \beta \le \frac{1}{p}$.

A slightly weaker but simpler E-value is

$$1+eta(x-p) \geq e^{eta(x-p)-eta^2}$$

as long as $\frac{-1}{2(1-p)} \leq \beta \leq \frac{1}{2p}$

Bernoulli E-process explicit construction: Upcrossings

For now fix $0 \le l < u \le 1$.

Suppose that $\bar{x}_{t_1} \leq I$ and $\bar{x}_{t_2} \geq u$.

If we product the weak e-value (with legal β) from time $t_1 + 1$ to time t_2 , we make

$$\prod_{i=t_1+1}^{t_2} e^{\beta(x_i-p)-\beta^2} = \exp\left(\beta \left(t_2 \bar{x}_{t_2} - t_1 \bar{x}_{t_1} - (t_2 - t_1)p\right) - (t_2 - t_1)\beta^2\right)$$

Bernoulli E-process explicit construction: Upcrossings

For now fix $0 \leq l < u \leq 1$.

Suppose that $\bar{x}_{t_1} \leq I$ and $\bar{x}_{t_2} \geq u$.

If we product the weak e-value (with legal β) from time $t_1 + 1$ to time t_2 , we make

$$\prod_{i=t_1+1}^{t_2} e^{\beta(x_i-p)-\beta^2} = \exp\left(\beta \left(t_2 \bar{x}_{t_2} - t_1 \bar{x}_{t_1} - (t_2 - t_1)p\right) - (t_2 - t_1)\beta^2\right)$$

Is that good?

Bernoulli E-process explicit construction: Upcrossings

If
$$ar{x}_{t_1} \leq l < u \leq ar{x}_{t_2}$$
, then $t_2 \geq t_1 rac{1-l}{1-u}$

If $u \ge p$, the hardest t_2 is that value. We then get

$$e^{t_1 \frac{u-l}{1-u} \left(\beta(1-p)-\beta^2\right)}$$

If we run with $\beta = (u - p)_+$ (which is legal), we guarantee

 $e^{t_1(u-l)(u-p)_+}$

And as $t_1 \geq 1$ w.l.o.g., this is at least

 $e^{(u-l)(u-p)_+}$

Down and up

A downcrossing from u at t_1 to l at t_2 can be symmetrically exploited with negative $\beta = -(p - l)_+$ for a gain of

 $e^{(u-l)(p-l)_+}$

Now for any p, a full down-up cycle gives at least

$$\min_{p \in [0,1]} e^{(u-l)((u-p)_+ + (p-l)_+)} = e^{(u-l)^2}$$

So the minimum of running products is an E-process winning $e^{(u-l)^2}$ every cycle.

In pictures

Given 0 < l < u < 1, we can make an E-process that multiplies by $e^{(u-l)^2}$ every down-up cycle. This hence has infinite supremum if $\liminf_n \bar{X}_n \leq l$ and $\limsup_n \bar{X}_n \geq u$.

Two more standard techniques finish the job

- A countable Bayesian mixture over rational I, u has ∞ supremum if $\lim_n \bar{X}_n$ does not exist.
- Bayesian mixture of height-stopped copies gets ∞ limit given ∞ supremum.

Examples

Truncated Cauchy (Negative) Example

Cauchy Example

Now let $\mathcal{P} = \{i.i.d. \ P_a | a > 0\}$ where P_a is Cauchy truncated to $[\pm a]$. Since P_a has bounded support, $P_a(A_{div}) = 0$. So A_{div} is \mathcal{P} -polar. But $\mu^*(A_{div}) = 1$.

Why? A finite-time detector τ for A_{div} will fire on P_{Cauchy} since $P_{Cauchy}(A_{div}) = 1$.

But for large a, P_a looks enough like P_{Cauchy} at time τ .

So by our result, no diverging E-process exists.

More details

Consider any stopping time τ such that $A_{div} \subseteq \{\tau < \infty\}$. We have $P_a(\tau(X) < \infty) \ge P_a(\tau(X) < \infty \text{ and } |X_t| < a \text{ for all } t \le \tau(X))$

 $\mathcal{A} = \mathbb{Q}(au(X) < \infty ext{ and } |X_t| < a ext{ for all } t \leq au(X)),$

Next, since $\mathbb{Q}(\tau(X) < \infty) \ge \mathbb{Q}(A_{\mathsf{div}}) = 1$

$$egin{aligned} &= \mathbb{Q}(|X_t| < a ext{ for all } t \leq au(X)) \ &\geq \mathbb{Q}(|X_t| < a ext{ for all } t \leq au) - \mathbb{Q}(au(X) > au) \end{aligned}$$

for any $T \in \mathbb{N}$. Fix any $\varepsilon > 0$ and choose T large enough that $\mathbb{Q}(\tau(X) > T) \leq \varepsilon$

 $\geq \mathbb{Q}(|X_t| < a \text{ for all } t \leq T) - \varepsilon.$

Sending a to ∞ we find that $\sup_{a \in (0,\infty)} P_a(\tau(X) < \infty) \ge 1 - \varepsilon$. Since τ was an arbitrary stopping time with $A_{\text{div}} \subseteq \{\tau < \infty\}$ it follows that $\mu^*(A_{\text{div}}) \ge 1 - \varepsilon$. Since this holds for every $\varepsilon > 0$, we obtain $\mu^*(A_{\text{div}}) = 1$.

Examples

Uniform Strong Law (Positive) Example

Bernoulli is ok, but truncated Cauchy is too wild.

Need some uniformity.

Theorem

Let \mathcal{P} be a family of probability measures P under which $(X_t)_{t \in \mathbb{N}}$ is i.i.d. with $\mathbb{E}_P[|X_1|] < \infty$. Assume also that \mathcal{P} satisfies the centered uniform integrability condition

$$\lim_{K\to\infty}\sup_{P\in\mathcal{P}}\mathbb{E}\left[\left|X_1-\mathbb{E}[X_1]\right|\mathbf{1}_{|X_1-\mathbb{E}_P[X_1]|>K}\right]=0.$$

Then $\mu^*(A_{div}) = 0$.

Conclusion

Conclusion

We talked about confident finite-time detection of events in composite settings.

Paper also contains

- E-process characterisation for $\mu^*(A) > 0$
- Pricing interpretation of μ^{\ast}
- Line crossing inequality

References