A/B/n Testing with Control in the Presence of Subpopulations

Simons RL Theory Reunion Workshop

Wouter M. Koolen
with Y. Russac, C. Katsimerou, D. Bohle, O. Cappé, A. Garivier
17 Nov 2021

CWI

Centrum Wiskunde \& Informatica

Meta-level questions

Pure Exploration

- We want algorithms for adaptively choosing experiments
- in an a-priori unknown environment
- to gain information as fast as possible
- about which decision is correct/best/useful

Meta-level questions

Pure Exploration

- We want algorithms for adaptively choosing experiments
- in an a-priori unknown environment
- to gain information as fast as possible
- about which decision is correct/best/useful
\Rightarrow Active Sequential Composite Multiple Hypothesis Test

Meta-level questions

Pure Exploration

- We want algorithms for adaptively choosing experiments
- in an a-priori unknown environment
- to gain information as fast as possible
- about which decision is correct/best/useful
\Rightarrow Active Sequential Composite Multiple Hypothesis Test

Examples

- ($\epsilon, \delta)$-PAC learning of policy in unknown MDP
- (MCTS) simulation-based planning
- Drug safety/efficacy trial
- This talk: $\mathrm{A} / \mathrm{B} / \mathrm{n}$ testing with control

The Problem

The Problem

The Question

Many questions interesting:
BAI What is the best version?

- Is any version better than the control?
- Which version, if any, is better than the control? $\{0, \ldots, K\}$ \{yes, no\} $\{0, \ldots, K\}$
ABC Which versions are better than the control? $\mathcal{P}(K)$

How does the presence of sub-populations affect learning?

The Protocol

Definition (Model)

A bandit with $K+1$ arms and J subpopulations is

- a $(K+1) \times J$ matrix μ of (Bernoulli, say) reward distributions
- distribution α of the J subpopulations

The Protocol

Definition (Model)

A bandit with $K+1$ arms and J subpopulations is

- a $(K+1) \times J$ matrix μ of (Bernoulli, say) reward distributions
- distribution α of the J subpopulations

The correct answer for $(\boldsymbol{\mu}, \boldsymbol{\alpha})$ is

$$
\boldsymbol{S}^{*}(\boldsymbol{\mu})=\left\{k \in\{1, \ldots, K\} \mid \sum_{j=1}^{J} \alpha_{j} \mu_{k, j}>\sum_{j=1}^{j} \alpha_{j} \mu_{0, j}\right\}
$$

The Protocol

Definition (Model)

A bandit with $K+1$ arms and J subpopulations is

- a $(K+1) \times J$ matrix μ of (Bernoulli, say) reward distributions
- distribution α of the J subpopulations

The correct answer for $(\boldsymbol{\mu}, \boldsymbol{\alpha})$ is

$$
S^{*}(\boldsymbol{\mu})=\left\{k \in\{1, \ldots, K\} \mid \sum_{j=1}^{J} \alpha_{j} \mu_{k, j}>\sum_{j=1}^{J} \alpha_{j} \mu_{0, j}\right\}
$$

Protocol for four Modes of Interaction

for $t=1,2, \ldots$ until Learner decides to stop

- | Oblivious | Agnostic | Proport. | Active |
| :--- | :--- | :--- | :--- |
| Pick A_{t} | Pick A_{t} | See $I_{t} \sim \boldsymbol{\alpha}$ | |
| Hidden $I_{t} \sim \boldsymbol{\alpha}$ | See $I_{t} \sim \boldsymbol{\alpha}$ | Pick A_{t} | Pick A_{t} and I_{t} |
- See reward $X_{t} \sim \mu_{A_{t}, I_{t}}$

Learner recommends $\hat{S} \subseteq\{1, \ldots, K\}$ (arms better than control)

Goal and Approach

We want our learner to
(1) be δ-PAC, i.e. for any bandit $\boldsymbol{\mu}$,
$\mathbb{P}_{\mu}($ Learner stops and recommends wrong answer $) \leq \delta$.
(2) minimise sample complexity, i.e. \mathbb{E}_{μ} [stopping time]

Our Results

(Russac, Katsimerou, Bohle, Cappé, Garivier, and Koolen, 2021)

- Information-theoretic lower bounds for all four modes
- Matching ($\delta \rightarrow 0$) algorithms (Track-and-Stop family)

Results

Let's think about $K=1$ arm vs control with J subpopulations.
Let's investigate the Gaussian case: reward for a, j is $\mathcal{N}\left(\mu_{a, j}, \sigma_{a, j}^{2}\right)$.

How to think about this

Estimate for arm quality carries uncertainty:

$$
\sum_{j=1}^{J} \alpha_{j} \hat{\mu}_{j, a}
$$

Uncertainty \Leftrightarrow variance. Now if (a, j) is sampled $n_{a, j}$ times,

$$
\mathbb{V}\left[\sum_{j=1}^{J} \alpha_{j} \hat{\mu}_{j, a}\right]=\sum_{j=1}^{J} \alpha_{j}^{2} \mathbb{V}\left[\hat{\mu}_{j, a}\right]=\sum_{j=1}^{J} \frac{\alpha_{j}^{2} \sigma_{a, j}^{2}}{n_{a, j}}
$$

How to think about this

Estimate for arm quality carries uncertainty:

$$
\sum_{j=1}^{J} \alpha_{j} \hat{\mu}_{j, a}
$$

Uncertainty \Leftrightarrow variance. Now if (a, j) is sampled $n_{a, j}$ times,

$$
\mathbb{V}\left[\sum_{j=1}^{J} \alpha_{j} \hat{\mu}_{j, a}\right]=\sum_{j=1}^{J} \alpha_{j}^{2} \mathbb{V}\left[\hat{\mu}_{j, a}\right]=\sum_{j=1}^{J} \frac{\alpha_{j}^{2} \sigma_{a, j}^{2}}{n_{a, j}}
$$

Minimised unconstrained (active mode) at

$$
n_{a, j} \propto \alpha_{j} \sigma_{a, j}
$$

Other modes: add constraints $\boldsymbol{n} \in \mathcal{C}$

Results (explicit Gaussian case)

$K=1$ arm vs control with $/$ subpopulations.
Denoting the gap by $\Delta_{1}=\sum_{j=1}^{j} \alpha_{j}\left(\mu_{1, j}-\mu_{0, j}\right)$, we find

$$
\begin{aligned}
T_{\text {oblivious }}^{\star}(\boldsymbol{\mu}) & \approx \frac{2\left(\sum_{a \in\{0,1\}} \sqrt{\sum_{j=1}^{J} \alpha_{j}\left(\sigma_{a, j}^{2}+\left(\mu_{a, j}-\mu_{a}\right)^{2}\right)}\right)^{2}}{\Delta_{1}^{2}} \\
T_{\text {agnostic }}^{\star}(\boldsymbol{\mu}) & =\frac{2\left(\sqrt{\sum_{j=1}^{J} \alpha_{j} \sigma_{0, j}^{2}}+\sqrt{\sum_{j=1}^{J} \alpha_{j} \sigma_{1, j}^{2}}\right)^{2}}{\Delta_{1}^{2}} \\
T_{\text {proport. }}^{\star}(\boldsymbol{\mu}) & =\frac{2 \sum_{j=1}^{J} \alpha_{j}\left(\sigma_{0, j}+\sigma_{1, j}\right)^{2}}{\Delta_{1}^{2}}, \\
T_{\text {active }}^{\star}(\boldsymbol{\mu}) & =\frac{2\left(\sum_{j=1}^{J} \alpha_{j}\left(\sigma_{0, j}+\sigma_{1, j}\right)\right)^{2}}{\Delta_{1}^{2}},
\end{aligned}
$$

Lower Bound

Theorem

For any strategy, the expected number of rounds for the ABC-S problem with mode constraint \mathcal{C} satisfies

$$
\liminf _{\delta \rightarrow 0} \frac{\mathbb{E}_{\mu}\left[\tau_{\delta}\right]}{\ln (1 / \delta)} \geq T^{\star}(\mu)
$$

where

$$
\begin{aligned}
T^{\star}(\boldsymbol{\mu})^{-1} & =\max _{\boldsymbol{w} \in \mathcal{C}} \inf _{\lambda: S^{*}(\lambda) \neq \mathcal{S}^{*}(\mu)} \sum_{a=0}^{K} \sum_{i=1}^{J} w_{a, i} K L\left(\mu_{a}, i, \lambda_{a, i}\right) \\
& =\max _{w \in \mathcal{C}} \min _{b \neq 0} \inf _{\lambda \in \mathcal{L}: \lambda_{0}<\lambda_{b}} \sum_{a \in\{0, b\}} \sum_{i=1}^{J} w_{a, i} K L\left(\mu_{a, i}, \lambda_{a, i}\right)
\end{aligned}
$$

NB: the min/inf is the (expected) amount of statistical evidence collected per round by sampling proportions w against any bandit $\boldsymbol{\lambda}$ with $S^{*}(\boldsymbol{\lambda}) \neq S^{*}(\boldsymbol{\mu})$

Algorithm

Sampling Rule

Ensure that actual sampling proportions \boldsymbol{N}_{t} / t track oracle proportions at plug-in estimate $\hat{\mu}(t)$

$$
\boldsymbol{w}^{*}(\hat{\boldsymbol{\mu}}(t))=\arg \max _{\boldsymbol{w} \in \mathcal{C}} \min _{\boldsymbol{b} \neq 0} \inf _{\boldsymbol{\lambda} \in \mathcal{L}: \lambda_{0}<\lambda_{b}} \sum_{a \in\{0, b\}} \sum_{i=1}^{J} w_{a, i} \mathrm{KL}\left(\hat{\mu}_{a, i}(t), \lambda_{a, i}\right)
$$

Stopping Rule

Stop at $\tau_{\delta}=t$ when we've collected enough information, i.e.

$$
\min _{b \neq 0} \inf _{\lambda \in \mathcal{L}: \lambda_{0}<\lambda_{b}} \sum_{a \in\{0, b\}} \sum_{i=1}^{J} N_{a, i}(t) \operatorname{KL}\left(\hat{\mu}_{a, i}(t), \lambda_{a, i}\right) \geq \ln \frac{\ln t}{\delta}
$$

Recommendation Rule

Output $S^{*}(\hat{\mu}(t))$

Validation: Asymptotic Optimality

Theorem

The stopping+recommendation rules are $\delta-P A C$.

Theorem

The algorithm ensures that the expected number of rounds for the $A B C-S$ problem with mode constraint \mathcal{C} satisfies

$$
\liminf _{\delta \rightarrow 0} \frac{\mathbb{E}_{\mu}\left[\tau_{\delta}\right]}{\ln (1 / \delta)} \leq T^{\star}(\mu)
$$

Upper bound matching lower bound, perfectly.

Validation: Real-world experiment with $\delta=0.1$

Conclusion

- Interesting pure exploration problems in $\mathrm{A} / \mathrm{B} / \mathrm{n}$ testing
- Subpopulation awareness reduces sample complexity ...
...even if the recommendations (arms) are unaware!

Conclusion

- Interesting pure exploration problems in $A / B / n$ testing
- Subpopulation awareness reduces sample complexityeven if the recommendations (arms) are unaware!

Next steps:

- Going beyond asymptotic optimality
- Structured (shape-constrained) mean matrices

Thanks!

References

E- Garivier, A. and E. Kaufmann (2016). "Optimal best arm identification with fixed confidence". In: Conference on Learning Theory. PMLR, pp. 998-1027.
Russac, Y., C. Katsimerou, D. Bohle, O. Cappé, A. Garivier, and W. M. Koolen (Dec. 2021). "A/B/n Testing with Control in the Presence of Subpopulations". In: Advances in Neural Information Processing Systems (NeurlPS) 34. Accepted.

