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Meta-level questions

Pure Exploration

• We want algorithms for adaptively choosing experiments
• in an a-priori unknown environment
• to gain information as fast as possible
• about which decision is correct/best/useful

⇒ Active Sequential Composite Multiple Hypothesis Test

Examples

• (ϵ, δ)-PAC learning of policy in unknown MDP
• (MCTS) simulation-based planning
• Drug safety/efficacy trial
• This talk: A/B/n testing with control
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The Question

. . .

Control Version 1 Version 2 Version K

Many questions interesting:
BAI What is the best version? {0, . . . ,K}

• Is any version better than the control? {yes,no}
• Which version, if any, is better than the control? {0, . . . ,K}

ABC Which versions are better than the control? P(K)

How does the presence of sub-populations affect learning?



The Protocol

Definition (Model)
A bandit with K + 1 arms and J subpopulations is

• a (K + 1)× J matrix µ of (Bernoulli, say) reward distributions
• distribution α of the J subpopulations

The correct answer for (µ,α) is

S∗(µ) =
{
k ∈ {1, . . . ,K}

∣∣∣∑J
j=1 αjµk,j >

∑J
j=1 αjµ0,j

}
Protocol for four Modes of Interaction
for t = 1,2, . . . until Learner decides to stop
• Oblivious Agnostic Proport. Active

Pick At

Hidden It ∼ α

Pick At

See It ∼ α

See It ∼ α

Pick At Pick At and It
• See reward Xt ∼ µAt,It

Learner recommends Ŝ ⊆ {1, . . . ,K} (arms better than control)
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Goal and Approach

We want our learner to

(1) be δ-PAC, i.e. for any bandit µ,

Pµ (Learner stops and recommends wrong answer) ≤ δ.

(2) minimise sample complexity, i.e. Eµ [stopping time]



Our Results

(Russac, Katsimerou, Bohle, Cappé, Garivier, and Koolen, 2021)

• Information-theoretic lower bounds for all four modes
• Matching (δ → 0) algorithms (Track-and-Stop family)



Results

Let’s think about K = 1 arm vs control with J subpopulations.

Let’s investigate the Gaussian case: reward for a, j is
N (µa,j, σ

2
a,j).



How to think about this

Estimate for arm quality carries uncertainty:

J∑
j=1

αjµ̂j,a

Uncertainty ⇔ variance. Now if (a, j) is sampled na,j times,

V

 J∑
j=1

αjµ̂j,a

 =

J∑
j=1

α2
j V [µ̂j,a] =

J∑
j=1

α2
j σ

2
a,j

na,j

Minimised unconstrained (active mode) at

na,j ∝ αjσa,j

Other modes: add constraints n ∈ C
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Results (explicit Gaussian case)

K = 1 arm vs control with J subpopulations.

Denoting the gap by ∆1 =
∑J

j=1 αj(µ1,j − µ0,j), we find

be
tte
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T⋆
oblivious(µ) ≈

2
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Lower Bound

Theorem
For any strategy, the expected number of rounds for the ABC-S
problem with mode constraint C satisfies

lim inf
δ→0

Eµ[τδ]

ln(1/δ) ≥ T⋆(µ)

where

T⋆(µ)−1 = max
w∈C

inf
λ:S∗(λ) ̸=S∗(µ)

K∑
a=0

J∑
i=1

wa,i KL(µa,i, λa,i)

= max
w∈C

min
b̸=0

inf
λ∈L:λ0<λb

∑
a∈{0,b}

J∑
i=1

wa,i KL(µa,i, λa,i)

NB: the min/inf is the (expected) amount of statistical evidence
collected per round by sampling proportions w against any
bandit λ with S∗(λ) ̸= S∗(µ)



Algorithm

Sampling Rule

Ensure that actual sampling proportions Nt/t track oracle
proportions at plug-in estimate µ̂(t)

w∗(µ̂(t)) = argmax
w∈C

min
b ̸=0

inf
λ∈L:λ0<λb

∑
a∈{0,b}

J∑
i=1

wa,i KL(µ̂a,i(t), λa,i)

Stopping Rule

Stop at τδ = t when we’ve collected enough information, i.e.

min
b ̸=0

inf
λ∈L:λ0<λb

∑
a∈{0,b}

J∑
i=1

Na,i(t) KL(µ̂a,i(t), λa,i) ≥ ln
ln t
δ

Recommendation Rule

Output S∗(µ̂(t))



Validation: Asymptotic Optimality

Theorem
The stopping+recommendation rules are δ-PAC.

Theorem
The algorithm ensures that the expected number of rounds for
the ABC-S problem with mode constraint C satisfies

lim inf
δ→0

Eµ[τδ]

ln(1/δ) ≤ T⋆(µ)

Upper bound matching lower bound, perfectly.



Validation: Real-world experiment with δ = 0.1
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Conclusion

• Interesting pure exploration problems in A/B/n testing
• Subpopulation awareness reduces sample complexity . . .
. . . even if the recommendations (arms) are unaware!

Next steps:

• Going beyond asymptotic optimality
• Structured (shape-constrained) mean matrices

Thanks!
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