A/B/n Testing with Control in the Presence of Subpopulations

Simons RL Theory Reunion Workshop

Wouter M. Koolen

with Y. Russac, C. Katsimerou, D. Bohle, O. Cappé, A. Garivier 17 Nov 2021

Pure Exploration

- We want algorithms for adaptively choosing experiments
- in an a-priori unknown environment
- to gain information as fast as possible
- about which decision is correct/best/useful

Pure Exploration

- We want algorithms for adaptively choosing experiments
- in an a-priori unknown environment
- to gain information as fast as possible
- about which decision is correct/best/useful

 \Rightarrow Active Sequential Composite Multiple Hypothesis Test

Pure Exploration

- We want algorithms for adaptively choosing experiments
- in an a-priori unknown environment
- to gain information as fast as possible
- about which decision is correct/best/useful

 \Rightarrow Active Sequential Composite Multiple Hypothesis Test

Examples

- (ϵ, δ) -PAC learning of policy in unknown MDP
- (MCTS) simulation-based planning
- Drug safety/efficacy trial
- This talk: A/B/n testing with control

Many questions interesting:

BAI	What is the best version?	$\{0,\ldots,\mathbf{K}\}$
•	Is any version better than the control?	$\{yes, no\}$
٠	Which version, if any, is better than the control?	$\{0,\ldots,K\}$
ABC	Which versions are better than the control?	$\mathcal{P}(K)$

How does the presence of sub-populations affect learning?

The Protocol

Definition (Model)

A bandit with K + 1 arms and J subpopulations is

- a (K + 1) imes J matrix μ of (Bernoulli, say) reward distributions
- distribution lpha of the J subpopulations

The Protocol

Definition (Model)

A bandit with K + 1 arms and J subpopulations is

- a (K + 1) imes J matrix μ of (Bernoulli, say) reward distributions
- distribution lpha of the J subpopulations

The correct answer for (μ, α) is

$$S^{*}(\mu) = \left\{ k \in \{1, \dots, K\} \left| \sum_{j=1}^{J} \alpha_{j} \mu_{k,j} > \sum_{j=1}^{J} \alpha_{j} \mu_{0,j} \right\} \right\}$$

The Protocol

Definition (Model)

A bandit with K + 1 arms and J subpopulations is

- a $({\it K}+1) imes {\it J}$ matrix μ of (Bernoulli, say) reward distributions
- distribution lpha of the J subpopulations

The correct answer for (μ, α) is

$$S^*(\mu) = \left\{ k \in \{1, \dots, K\} \middle| \sum_{j=1}^J \alpha_j \mu_{k,j} > \sum_{j=1}^J \alpha_j \mu_{0,j} \right\}$$

Protocol for four Modes of Interaction

for $t = 1, 2, \dots$ until Learner decides to stop

•	Oblivious	Agnostic	Proport.	Active
	Pick A _t	Pick A _t	See $I_t \sim lpha$	
	Hidden $I_t \sim lpha$	See $I_t \sim lpha$	Pick A _t	Pick A_t and I_t

• See reward $X_t \sim \mu_{A_t, l_t}$

Learner recommends $\hat{S} \subseteq \{1, \dots, K\}$ (arms better than control)

We want our learner to

(1) be δ -PAC, i.e. for any bandit μ ,

 \mathbb{P}_{μ} (Learner stops and recommends wrong answer) $\leq \delta$.

(2) minimise **sample complexity**, i.e. \mathbb{E}_{μ} [stopping time]

(Russac, Katsimerou, Bohle, Cappé, Garivier, and Koolen, 2021)

- · Information-theoretic lower bounds for all four modes
- Matching ($\delta \rightarrow$ 0) algorithms (Track-and-Stop family)

Let's think about K = 1 arm vs control with J subpopulations. Let's investigate the **Gaussian** case: reward for a, j is $\mathcal{N}(\mu_{a,j}, \sigma_{a,j}^2)$. Estimate for arm quality carries uncertainty:

$$\sum_{j=1}^{J} \alpha_j \hat{\mu}_{j,a}$$

Uncertainty \Leftrightarrow variance. Now if (a, j) is sampled $n_{a,j}$ times,

$$\mathbb{V}\left[\sum_{j=1}^{J} \alpha_{j} \hat{\mu}_{j,a}\right] = \sum_{j=1}^{J} \alpha_{j}^{2} \mathbb{V}\left[\hat{\mu}_{j,a}\right] = \sum_{j=1}^{J} \frac{\alpha_{j}^{2} \sigma_{a,j}^{2}}{n_{a,j}}$$

Estimate for arm quality carries uncertainty:

$$\sum_{j=1}^{J} \alpha_j \hat{\mu}_{j,a}$$

Uncertainty \Leftrightarrow variance. Now if (a, j) is sampled $n_{a,j}$ times,

$$\mathbb{V}\left[\sum_{j=1}^{J} \alpha_{j} \hat{\mu}_{j,a}\right] = \sum_{j=1}^{J} \alpha_{j}^{2} \mathbb{V}\left[\hat{\mu}_{j,a}\right] = \sum_{j=1}^{J} \frac{\alpha_{j}^{2} \sigma_{a,j}^{2}}{n_{a,j}}$$

Minimised unconstrained (active mode) at

$$n_{a,j} \propto \alpha_j \sigma_{a,j}$$

Other modes: add constraints $\mathbf{n} \in \mathcal{C}$

better

K = 1 arm vs control with J subpopulations.

Denoting the gap by $\Delta_1 = \sum_{j=1}^{J} \alpha_j (\mu_{1,j} - \mu_{0,j})$, we find

$$T_{\text{oblivious}}^{\star}(\mu) \approx \frac{2\left(\sum_{a \in \{0,1\}} \sqrt{\sum_{j=1}^{J} \alpha_j (\sigma_{a,j}^2 + (\mu_{a,j} - \mu_a)^2)}\right)^2}{\Delta_1^2}$$

$$T_{\text{agnostic}}^{\star}(\mu) = \frac{2\left(\sqrt{\sum_{j=1}^{J} \alpha_j \sigma_{0,j}^2} + \sqrt{\sum_{j=1}^{J} \alpha_j \sigma_{1,j}^2}\right)^2}{\Delta_1^2}$$

$$T_{\text{proport.}}^{\star}(\mu) = \frac{2\sum_{j=1}^{J} \alpha_j (\sigma_{0,j} + \sigma_{1,j})^2}{\Delta_1^2},$$

$$T_{\text{active}}^{\star}(\mu) = \frac{2\left(\sum_{j=1}^{J} \alpha_j (\sigma_{0,j} + \sigma_{1,j})\right)^2}{\Delta_1^2},$$

Lower Bound

Theorem

For any strategy, the expected number of rounds for the ABC-S problem with mode constraint \mathcal{C} satisfies

$$\liminf_{\delta o \mathsf{0}} rac{\mathbb{E}_{oldsymbol{\mu}}[au_{\delta}]}{\ln(1/\delta)} \geq \mathcal{T}^{\star}(oldsymbol{\mu})$$

where

$$T^{*}(\mu)^{-1} = \max_{w \in \mathcal{C}} \inf_{\lambda:S^{*}(\lambda) \neq S^{*}(\mu)} \sum_{a=0}^{K} \sum_{i=1}^{J} W_{a,i} \operatorname{KL}(\mu_{a,i}, \lambda_{a,i})$$
$$= \max_{w \in \mathcal{C}} \min_{b \neq 0} \inf_{\lambda \in \mathcal{L}: \lambda_{0} < \lambda_{b}} \sum_{a \in \{0,b\}} \sum_{i=1}^{J} W_{a,i} \operatorname{KL}(\mu_{a,i}, \lambda_{a,i})$$

NB: the min/inf is the (expected) amount of statistical evidence collected per round by sampling proportions w against any bandit λ with $S^*(\lambda) \neq S^*(\mu)$

Sampling Rule

Ensure that actual sampling proportions N_t/t track oracle proportions at plug-in estimate $\hat{\mu}(t)$

$$w^*(\hat{\mu}(t)) = \arg \max_{w \in \mathcal{C}} \min_{b \neq 0} \inf_{\lambda \in \mathcal{L}: \lambda_0 < \lambda_b} \sum_{a \in \{0, b\}} \sum_{i=1}^J w_{a,i} \operatorname{KL}(\hat{\mu}_{a,i}(t), \lambda_{a,i})$$

Stopping Rule

Stop at $\tau_{\delta} = t$ when we've collected enough information, i.e.

$$\min_{b \neq 0} \inf_{\lambda \in \mathcal{L}: \lambda_0 < \lambda_b} \sum_{a \in \{0, b\}} \sum_{i=1}^J N_{a,i}(t) \operatorname{KL}(\hat{\mu}_{a,i}(t), \lambda_{a,i}) \geq \ln \frac{\ln t}{\delta}$$

Recommendation Rule

Output $S^*(\hat{\mu}(t))$

Theorem

The stopping+recommendation rules are δ -PAC.

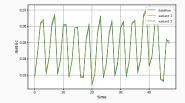
Theorem

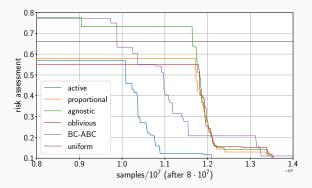
The algorithm ensures that the expected number of rounds for the ABC-S problem with mode constraint \mathcal{C} satisfies

$$\liminf_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\ln(1/\delta)} \leq \mathcal{T}^{\star}(\boldsymbol{\mu})$$

Upper bound matching lower bound, perfectly.

Validation: Real-world experiment with $\delta = 0.1$





- Interesting pure exploration problems in A/B/n testing
- Subpopulation awareness reduces **sample complexity** even if the recommendations (arms) are unaware!

- Interesting pure exploration problems in A/B/n testing
- Subpopulation awareness reduces **sample complexity** even if the recommendations (arms) are unaware!

Next steps:

- Going beyond asymptotic optimality
- Structured (shape-constrained) mean matrices

Thanks!

References

- Garivier, A. and E. Kaufmann (2016). "Optimal best arm identification with fixed confidence". In: *Conference on Learning Theory*. PMLR, pp. 998–1027.
- Russac, Y., C. Katsimerou, D. Bohle, O. Cappé, A. Garivier, and W. M. Koolen (Dec. 2021). "A/B/n Testing with Control in the Presence of Subpopulations". In: Advances in Neural Information Processing Systems (NeurIPS) 34. Accepted.