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Lay of the Land

Bandits

reward maximisation pure exploration

fixed budget fixed confidence

confidence intervals Thompson sampling Track and Stop

simple regret



Context

Pure Exploration is statistical hypothesis testing on steroids:

• Multiple
• Composite
• Sequential
• Active



Menu

• Introduce Pure Exploration problems.
• Sketch the GLR stopping rule
• Sketch the TaS sampling rule
• Highlight some recent lessons learned.



Pure Exploration
Introduction



Best Arm Identification (BAI)

Assumption: Bernoulli Multi-Armed Bandit
K Bernoulli arms with unknown means µ = (µ1, . . . , µK) ∈ [0,1]K .

BAI-MAB Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks arm At ∈ [K]
• Learner observes Xt ∼ Bernoulli(µAt)

Learner recommends Î ∈ [K].
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BAI-MAB Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks arm At ∈ [K]
• Learner observes Xt ∼ Bernoulli(µAt)

Learner recommends Î ∈ [K].

Let τ ∈ N ∪ {∞} denote the # rounds after which Learner stops.

Definition
Learner is δ-PAC if

Pµ
{
τ <∞ and Î 6= argmaxi µi︸ ︷︷ ︸

a mistake

}
≤ δ for all µ ∈ [0,1]K .

Definition
We call Eµ[τ ] the sample complexity of Learner in bandit µ.

Goal: efficient δ-PAC algorithms with minimal sample complexity.
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Best Arm Identification, prototypical solution

Goal: efficient δ-PAC algorithms with minimal sample complexity.

Fancy Algorithm(δ)

Stop when . . .
Sample arm At = . . .

Recommend Î = . . .

Theorem (lower bd)
Any δ-PAC algorithm needs
sample complexity at least

Eµ[τ ] ≥ f (µ) ln 1
δ

Theorem (safe)
Fancy Algorithm(δ) is δ-PAC

Theorem (comput. eff.)
. . . runs in time O(. . . )

Theorem (statistic. eff.)
. . . has sample complexity

Eµ[τ ] ≤ f (µ) ln 1
δ + o(ln 1

δ ).
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Many Variations of BAI Problem in Literature

Assumptions about arm distributions

• Exponential Family:
Gaussian, Gamma, Poisson, Geometric, . . .

• Non-parametric:
bounded support, sub-Gaussian, (1+ ε)th moment, . . .

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, . . .

Identify a near-optimal arm: Learner is (ε, δ)-PAC if

Pµ
{
τ <∞ and µÎ < maxi µi − ε︸ ︷︷ ︸

a mistake

}
≤ δ for all µ ∈ [0,1]K .

Feedback graphs (semi-bandit, . . . )
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A/B Testing Problems



A/B Testing Problems

Input: baseline arm µ0, candidates µ1, . . . , µK .

Problem (Best Arm Identification)

i∗(µ) = argmax
i∈{0,...,K}

µi

Problem (A/B test, decision version)

i∗(µ) = 1
{

max
i∈{1,...,K}

µi > µ0

}
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A/B Testing Problems

Input: baseline arm µ0, candidates µ1, . . . , µK .

Problem (A/B test, identification version)

i∗(µ) =

{
{0} µ0 > maxi∈{1,...,K} µi

{i ∈ {1, . . . ,K}|µi > µ0} o.w.

this is a multiple-answer problem

Problem (A/B test, thresholding version)

i∗(µ) = {i ∈ {1, . . . ,K}|µi > µ0}

this is a set-valued single-answer problem
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More Advanced Testing Problems

Input: arms µi,j, i ∈ {1, . . . ,K}, j ∈ {1, . . . ,M}

Problem (Maximin Action Identification)

i∗(µ) = argmax
i∈{1,...,K}

min
j∈{1,...,M}

µi,j



GLRT Stopping



Stopping

When can we stop?

When can we stop and give answer ı̂?

There is no plausible bandit model λ on which ı̂ is wrong.
Definition
Generalized Likelihood Ratio (GLR) measure of evidence

GLRn(̂ı) := ln
supµ:ı̂∈i∗(µ) P (Xn|An,µ)

supλ:ı̂ 6∈i∗(λ) P (Xn|An,λ)

Idea: stop when GLRn(̂ı) is big for some answer ı̂.



Stopping

When can we stop?

When can we stop and give answer ı̂?

There is no plausible bandit model λ on which ı̂ is wrong.
Definition
Generalized Likelihood Ratio (GLR) measure of evidence

GLRn(̂ı) := ln
supµ:ı̂∈i∗(µ) P (Xn|An,µ)

supλ:ı̂ 6∈i∗(λ) P (Xn|An,λ)

Idea: stop when GLRn(̂ı) is big for some answer ı̂.



Stopping

When can we stop?

When can we stop and give answer ı̂?

There is no plausible bandit model λ on which ı̂ is wrong.

Definition
Generalized Likelihood Ratio (GLR) measure of evidence

GLRn(̂ı) := ln
supµ:ı̂∈i∗(µ) P (Xn|An,µ)

supλ:ı̂ 6∈i∗(λ) P (Xn|An,λ)

Idea: stop when GLRn(̂ı) is big for some answer ı̂.



Stopping

When can we stop?

When can we stop and give answer ı̂?

There is no plausible bandit model λ on which ı̂ is wrong.
Definition
Generalized Likelihood Ratio (GLR) measure of evidence

GLRn(̂ı) := ln
supµ:ı̂∈i∗(µ) P (Xn|An,µ)

supλ:ı̂ 6∈i∗(λ) P (Xn|An,λ)

Idea: stop when GLRn(̂ı) is big for some answer ı̂.



Stopping

When can we stop?

When can we stop and give answer ı̂?

There is no plausible bandit model λ on which ı̂ is wrong.
Definition
Generalized Likelihood Ratio (GLR) measure of evidence

GLRn(̂ı) := ln
supµ:ı̂∈i∗(µ) P (Xn|An,µ)

supλ:ı̂ 6∈i∗(λ) P (Xn|An,λ)

Idea: stop when GLRn(̂ı) is big for some answer ı̂.



GLR Stopping

For any plausible answer ı̂ ∈ i∗(µ̂(n)), the GLRn simplifies to

GLRn(̂ı) = inf
λ:ı̂6∈i∗(λ)

K∑
a=1

Na(n) KL(µ̂a(n), λa)

where KL(x,y) is the Kullback-Leibler divergence in the
exponential family.



GLR Stopping, Treshold

What is a suitable threshold for GLRn so that we do not make
mistakes?

A mistake is made when GLRn(̂ı) is big while ı̂ 6∈ i∗(µ).

But then

GLRn(̂ı) = inf
λ:ı̂ 6∈i∗(λ)

K∑
a=1

Na(n) KL(µ̂a(n), λa) ≤
K∑

a=1
Na(n) KL(µ̂a(n), µa) .

Good anytime deviation inequalities exist for that upper bound.
Theorem (Kaufmann and Koolen, 2018)

P

∃n :
K∑

a=1
Na(n) KL(µ̂a(n), µa) −

∑
n

ln lnNa(n) ≥ C(K, δ)

 ≤ δ
for C(K, δ) ≈ ln 1

δ + K ln ln 1
δ .
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GLR Stopping Conclusion

• Tight criterion for stopping.
• We will see asymptotically matches lower bound.
• Often relatively easy to compute
• Typically reduces sample complexity by factor ≈ 2 for BAI
problems compared to confidence-interval based stopping
(Why? Confidence region)

• Performs very well in practise



Track-and-Stop Algorithm
Template



Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)
A (spectacular) difference in behaviour must be due to a
(spectacular) difference in the observations.

So being δ-PAC on µ and also on λ with i∗(µ) 6= i∗(λ) requires
collecting enough discriminating information.

Define the alternative to µ by Alt(µ) := {bandit λ|i∗(λ) 6= i∗(µ)}.

Theorem (Castro 2014; Garivier and Kaufmann 2016)
Fix a δ-correct strategy. Then for every bandit model µ ∈M

Eµ[τ ] ≥ T∗(µ) ln
1
δ

where the characteristic time T∗(µ) is given by

1
T∗(µ)

= max
w∈4K

inf
λ∈Alt(µ)

K∑
i=1

wi KL(µi, λi)
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Instance-Dependent Sample Complexity Lower Bound
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Example

K = 5 Bernoulli arms, µ = (0.4,0.3,0.2,0.1,0.0).

T∗(µ) = 200.4 w∗(µ) = (0.45,0.46,0.06,0.02,0.01)

At confidence δ = 0.05 we have ln 1
δ = 3.0 and hence

Eµ[τ ] ≥ 601.2.



Lower Bounds Inspire Strategies

Recall sample complexity lower bound at bandit µ governed by

max
w∈4K

inf
λ∈Alt(µ)

K∑
i=1

wi KL(µi, λi)

Matching algorithms must sample with argmax (oracle)
proportions w∗(µ).
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Lower Bounds Inspire Strategies

Track-and-Stop scheme (Garivier and Kaufmann, 2016)

At each time step t

• compute plug-in oracle solution w∗(µ̂t)

• sample arm At to track (ensure Na(t)/t → w∗a(µ̂t))
• force exploration to ensure µ̂t → µ.

Stop using GLRT stopping rule, recommend single non-rejected
arm.

Theorem (Asymptotic Instance-Optimality)
The sample complexity of Track-and-Stop for BAI is bounded by

Eµ[τ ] ≤ T∗(µ) ln 1
δ + o(ln 1

δ )

Analysis
Convergence µ̂t → µ and continuity of µ 7→ w∗(µ) ensures
sampling proportion Na(t)/t approximates oracle w∗a(µ).
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Asymptotic Optimality

Why interested in asymptotically optimal algorithms?

• State-of-the-art performance in practise (some problems)
• Best Arm Identification
• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques
(confidence intervals, elimination, Thompson sampling, . . . )

• TaS reduces the identification problem to efficiently
computing w∗(µ).
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Asymptotic Optimality

Why interested in asymptotically optimal algorithms?

• State-of-the-art performance in practise (some problems)
• Best Arm Identification
• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques
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• TaS reduces the identification problem to efficiently
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TaS Conclusion

• “Track” instance-optimal sampling rule.
• Often relatively easy to compute
• Works very well for BAI. Not many experiments beyond.
• Performs very well in practise



Two Interesting Points



Sticky Track-and-Stop for Multiple Correct Answers

Q: Is µ 7→ w∗(µ) always continuous? No!

For single-answer problems, can escalate to set-valued
mappings and upper hemi-continuity. Tracking requires
care.

For multiple-answer problems (including ε-BAI), continuity is
unsalvageable.

Contributions in (Degenne and Koolen, 2019)

• A lower-bound with multiple correct answers (now
maxmax inf).

• A new algorithm Sticky Track-and-Stop that asymptotically
matches the lower bound.

• Explicit example where vanilla TaS fails (arcsine law)
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Saddle Point Techniques

Standard technique: approximately solve saddle point problem

max
w∈4K

inf
λ∈Alt(µ)

K∑
i=1

wi KL(µi, λi)

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

• Plug-in estimate µ̂t (so problem is shifting).
• Advance the saddle point solver by one iteration for every
bandit interaction.

• Add optimism to gradients to induce exploration.
• Compose regret bound, concentration and optimism to get
finite-confidence guarantee.

Implementation available in tidnabbil library.
Analogue for regret in (Degenne, Shao, and Koolen, 2020)

https://bitbucket.org/wmkoolen/tidnabbil
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Thanks!
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