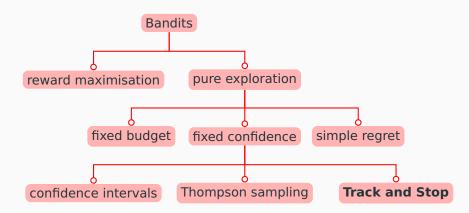
The Pure Exploration Renaissance

Deep Dive @ Booking.com

Wouter Koolen

December 10th, 2020



Pure Exploration is statistical hypothesis testing on steroids:

- Multiple
- Composite
- Sequential
- Active

- Introduce Pure Exploration problems.
- Sketch the GLR stopping rule
- Sketch the TaS sampling rule
- Highlight some recent lessons learned.

Pure Exploration Introduction

Assumption: Bernoulli Multi-Armed Bandit

K Bernoulli arms with unknown means $\mu = (\mu_1, \dots, \mu_K) \in [0, 1]^K$.

Assumption: Bernoulli Multi-Armed Bandit

K Bernoulli arms with unknown means $\mu = (\mu_1, \dots, \mu_K) \in [0, 1]^K$.

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

Definition

Learner is δ -PAC if

$$\mathbb{P}_{\boldsymbol{\mu}}\Big\{\underbrace{\tau < \infty \text{ and } \hat{l} \neq \arg\max_{i} \mu_{i}}_{\text{a mistake}}\Big\} \leq \delta \quad \text{for all } \boldsymbol{\mu} \in [0, 1]^{K}.$$

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

Definition

Learner is δ -PAC if

$$\mathbb{P}_{\boldsymbol{\mu}}\Big\{\underbrace{\tau < \infty \text{ and } \hat{l} \neq \arg\max_{i} \mu_{i}}_{\text{a mistake}}\Big\} \leq \delta \quad \text{for all } \boldsymbol{\mu} \in [0, 1]^{K}.$$

Definition

We call $\mathbb{E}_{\mu}[\tau]$ the sample complexity of Learner in bandit μ .

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

Definition

Learner is δ -PAC if

$$\mathbb{P}_{\boldsymbol{\mu}}\Big\{\underbrace{\tau < \infty \text{ and } \hat{l} \neq \arg\max_{i} \mu_{i}}_{\text{a mistake}}\Big\} \leq \delta \quad \text{for all } \boldsymbol{\mu} \in [0, 1]^{K}.$$

Definition

We call $\mathbb{E}_{\mu}[\tau]$ the sample complexity of Learner in bandit μ .

Goal: efficient δ -PAC algorithms with minimal sample complexity.

Fancy Algorithm(δ)

Stop when ...

Sample arm $A_t = \dots$ Recommend $\hat{l} = \dots$

Fancy Algorithm (δ)

Stop when ... Sample arm $A_t = ...$ Recommend $\hat{l} = ...$

Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Fancy Algorithm (δ)

Stop when ... Sample arm $A_t = ...$ Recommend $\hat{l} = ...$ Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Theorem (comput. eff.)

 \dots runs in time $O(\dots)$

Fancy Algorithm (δ)

Stop when ... Sample arm $A_t = ...$ Becommend $\hat{l} = ...$

Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Theorem (comput. eff.) runs in time O(...)

Theorem (statistic. eff.)

... has sample complexity

 $\mathbb{E}_{\mu}[\tau] \leq f(\mu) \ln \frac{1}{\delta} + o(\ln \frac{1}{\delta}).$

Fancy Algorithm (δ)

Stop when ...

Sample arm $A_t = \dots$ Recommend $\hat{I} = \dots$

Theorem (lower bd)

Any δ -PAC algorithm needs sample complexity at least

 $\mathbb{E}_{\mu}[\tau] \geq f(\mu) \ln \frac{1}{\delta}$

Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Theorem (comput. eff.) runs in time O(....)

Theorem (statistic. eff.)

... has sample complexity

 $\mathbb{E}_{\mu}[\tau] \leq f(\mu) \ln rac{1}{\delta} + o(\ln rac{1}{\delta}).$

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{\text{th}}$ moment, \dots

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{th}$ moment, ...

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, ...

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{th}$ moment, ...

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, ...

Identify a near-optimal arm: Learner is (ϵ, δ) -PAC if

$$\mathbb{P}_{\mu}\left\{\underbrace{\tau < \infty \text{ and } \mu_{\hat{l}} < \max_{i} \mu_{i} - \epsilon}_{\text{a mistake}}\right\} \leq \delta \quad \text{for all } \mu \in [0, 1]^{\kappa}.$$

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{th}$ moment, ...

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, ...

Identify a near-optimal arm: Learner is (ϵ, δ) -PAC if

$$\mathbb{P}_{\mu}\left\{\underbrace{\tau < \infty \text{ and } \mu_{\hat{l}} < \max_{i} \mu_{i} - \epsilon}_{\text{a mistake}}\right\} \leq \delta \quad \text{for all } \mu \in [0, 1]^{K}.$$

Feedback graphs (semi-bandit, ...)

A/B Testing Problems

Problem (Best Arm Identification)

$$i^*(\mu) = \underset{i \in \{0,...,K\}}{\operatorname{arg max}} \mu_i$$

Problem (Best Arm Identification)

$$i^*(\mu) = rg \max_{i \in \{0,...,K\}} \mu_i$$

Problem (A/B test, decision version)

$$\mu^{i*}(oldsymbol{\mu}) \;=\; \mathbf{1}\left\{\max_{i\in\{1,...,\mathcal{K}\}}\mu_i>\mu_{\mathbf{0}}
ight\}$$

Problem (A/B test, identification version) $i^{*}(\mu) = \begin{cases} \{0\} & \mu_{0} > \max_{i \in \{1,...,K\}} \mu_{i} \\ \{i \in \{1,...,K\} | \mu_{i} > \mu_{0}\} & o.w. \end{cases}$ this is a multiple-answer problem

Problem (A/B test, identification version)

$$i^{*}(\boldsymbol{\mu}) = \begin{cases} \{0\} & \mu_{0} > \max_{i \in \{1,...,K\}} \mu_{i} \\ \{i \in \{1,...,K\} | \mu_{i} > \mu_{0}\} & o.w. \end{cases}$$

this is a multiple-answer problem

Problem (A/B test, thresholding version)

$$i^*(\mu) = \{i \in \{1, \ldots, K\} | \mu_i > \mu_0\}$$

this is a set-valued single-answer problem

Input: arms $\mu_{i,j}$, $i \in \{1, \dots, K\}$, $j \in \{1, \dots, M\}$

Problem (Maximin Action Identification)

$$i^*(oldsymbol{\mu}) = rg\max_{i \in \{1,...,K\}} \min_{j \in \{1,...,M\}} \mu_{i,j}$$

GLRT Stopping

When can we stop and give answer $\hat{\imath}$?

When can we stop and give answer \hat{i} ?

There is no plausible bandit model λ on which $\hat{\imath}$ is wrong.

When can we stop and give answer $\hat{\imath}$?

There is no plausible bandit model λ on which $\hat{\imath}$ is wrong.

Definition

Generalized Likelihood Ratio (GLR) measure of evidence

$$\mathsf{GLR}_n(\hat{\imath}) := \ln \frac{\sup_{\mu:\hat{\imath} \in i^*(\mu)} P(X^n | A^n, \mu)}{\sup_{\lambda:\hat{\imath} \notin i^*(\lambda)} P(X^n | A^n, \lambda)}$$

When can we stop and give answer \hat{i} ?

There is no plausible bandit model λ on which $\hat{\imath}$ is wrong.

Definition

Generalized Likelihood Ratio (GLR) measure of evidence

$$\mathsf{GLR}_n(\hat{\imath}) := \ln \frac{\sup_{\mu:\hat{\imath} \in i^*(\mu)} P(X^n | A^n, \mu)}{\sup_{\lambda:\hat{\imath} \notin i^*(\lambda)} P(X^n | A^n, \lambda)}$$

Idea: stop when $GLR_n(\hat{\imath})$ is big for some answer $\hat{\imath}$.

For any plausible answer $\hat{\imath} \in i^*(\hat{\mu}(n))$, the GLR_n simplifies to

$$\mathsf{GLR}_n(\hat{\imath}) = \inf_{\lambda:\hat{\imath}\notin i^*(\lambda)} \sum_{a=1}^{\kappa} N_a(n) \,\mathsf{KL}(\hat{\mu}_a(n), \lambda_a)$$

where KL(x, y) is the Kullback-Leibler divergence in the exponential family.

GLR Stopping, Treshold

What is a suitable threshold for GLR_n so that we do not make mistakes?

GLR Stopping, Treshold

What is a suitable threshold for GLR_n so that we do not make mistakes?

A mistake is made when $GLR_n(\hat{\imath})$ is big while $\hat{\imath} \notin i^*(\mu)$.

GLR Stopping, Treshold

What is a suitable threshold for GLR_n so that we do not make mistakes?

A mistake is made when $GLR_n(\hat{\imath})$ is big while $\hat{\imath} \notin i^*(\mu)$.

But then

$$\mathsf{GLR}_n(\hat{\imath}) = \inf_{\lambda:\hat{\imath}\notin i^*(\lambda)} \sum_{a=1}^K N_a(n) \,\mathsf{KL}(\hat{\mu}_a(n), \lambda_a) \leq \left(\sum_{a=1}^K N_a(n) \,\mathsf{KL}(\hat{\mu}_a(n), \mu_a)\right)$$

GLR Stopping, Treshold

What is a suitable threshold for GLR_n so that we do not make mistakes?

A mistake is made when $GLR_n(\hat{\imath})$ is big while $\hat{\imath} \notin i^*(\mu)$.

But then

$$\mathsf{GLR}_n(\hat{\imath}) = \inf_{\lambda:\hat{\imath}\notin i^*(\lambda)} \sum_{a=1}^K N_a(n) \,\mathsf{KL}(\hat{\mu}_a(n), \lambda_a) \leq \left(\sum_{a=1}^K N_a(n) \,\mathsf{KL}(\hat{\mu}_a(n), \mu_a)\right)$$

Good anytime deviation inequalities exist for that upper bound.

Theorem (Kaufmann and Koolen, 2018)

$$\mathbb{P}\left(\exists n: \sum_{a=1}^{K} N_a(n) \operatorname{KL}(\hat{\mu}_a(n), \mu_a)\right) - \sum_n \ln \ln N_a(n) \ge C(K, \delta)\right) \le \delta$$

for $C(K, \delta) \approx \ln \frac{1}{\delta} + K \ln \ln \frac{1}{\delta}$.

- Tight criterion for stopping.
- We will see asymptotically matches lower bound.
- Often relatively easy to compute
- Typically reduces sample complexity by factor \approx 2 for BAI problems compared to confidence-interval based stopping (Why? Confidence region)
- Performs very well in practise

Track-and-Stop Algorithm Template

Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular) difference in the observations.

So being δ -PAC on μ and also on λ with $i^*(\mu) \neq i^*(\lambda)$ requires collecting enough discriminating information.

Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular) difference in the observations.

So being δ -PAC on μ and also on λ with $i^*(\mu) \neq i^*(\lambda)$ requires collecting enough discriminating information.

Define the *alternative* to μ by Alt $(\mu) := \{ \text{bandit } \lambda | i^*(\lambda) \neq i^*(\mu) \}$.

Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular) difference in the observations.

So being δ -PAC on μ and also on λ with $i^*(\mu) \neq i^*(\lambda)$ requires collecting enough discriminating information.

Define the *alternative* to μ by Alt $(\mu) := \{ \text{bandit } \lambda | i^*(\lambda) \neq i^*(\mu) \}.$

Theorem (Castro 2014; Garivier and Kaufmann 2016) *Fix a* δ *-correct strategy. Then for every bandit model* $\mu \in \mathcal{M}$

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ \mathcal{T}^*(oldsymbol{\mu}) \ \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{T^*(\mu)} = \left(\max_{w \in \Delta_K} \inf_{\lambda \in Alt(\mu)} \sum_{i=1}^K w_i \operatorname{KL}(\mu_i, \lambda_i) \right)$$

K = 5 Bernoulli arms, $\mu = (0.4, 0.3, 0.2, 0.1, 0.0)$.

$$T^*(\mu) = 200.4$$
 $w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At confidence $\delta=0.05$ we have $\ln \frac{1}{\delta}=3.0$ and hence $\mathbb{E}_{\mu}[\tau] \geq 601.2$.

Recall sample complexity lower bound at bandit μ governed by

$$\left[\max_{\boldsymbol{w}\in \bigtriangleup_{\kappa}}\inf_{\boldsymbol{\lambda}\in\mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_{i}\,\mathsf{KL}(\mu_{i},\lambda_{i})\right]$$

Recall sample complexity lower bound at bandit μ governed by

$$\max_{\boldsymbol{w} \in \Delta_{\kappa}} \inf_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i, \lambda_i)$$

Matching algorithms must sample with **argmax** (*oracle*) proportions $w^*(\mu)$.

Track-and-Stop scheme (Garivier and Kaufmann, 2016)

At each time step t

- compute plug-in **oracle solution** $w^*(\hat{\mu}_t)$
- sample arm A_t to track (ensure $N_a(t)/t
 ightarrow w^*_a(\hat{\mu}_t)$)
- force exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.

Stop using GLRT stopping rule, recommend single non-rejected arm.

Track-and-Stop scheme (Garivier and Kaufmann, 2016)

At each time step t

- compute plug-in **oracle solution** $w^*(\hat{\mu}_t)$
- sample arm A_t to track (ensure $N_a(t)/t
 ightarrow w^*_a(\hat{\mu}_t)$)
- force exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.

Stop using GLRT stopping rule, recommend single non-rejected arm.

Theorem (Asymptotic Instance-Optimality)

The sample complexity of Track-and-Stop for BAI is bounded by

 $\mathbb{E}_{\mu}[\tau] \leq T^{*}(\mu) \ln rac{1}{\delta} + o(\ln rac{1}{\delta})$

Analysis

Convergence $\hat{\mu}_t \rightarrow \mu$ and continuity of $\mu \mapsto w^*(\mu)$ ensures sampling proportion $N_a(t)/t$ approximates oracle $w^*_a(\mu)$.

Why interested in asymptotically optimal algorithms?

- State-of-the-art performance in practise (some problems)
 - Best Arm Identification
 - Minimax Game Tree Search

Why interested in asymptotically optimal algorithms?

- State-of-the-art performance in practise (some problems)
 - Best Arm Identification
 - Minimax Game Tree Search
- Different ("fresh") structure compared to other techniques (confidence intervals, elimination, Thompson sampling, ...)

Why interested in asymptotically optimal algorithms?

- State-of-the-art performance in practise (some problems)
 - Best Arm Identification
 - Minimax Game Tree Search
- Different ("fresh") structure compared to other techniques (confidence intervals, elimination, Thompson sampling, ...)
- TaS reduces the identification problem to efficiently computing $w^*(\mu)$.

- "Track" instance-optimal sampling rule.
- Often relatively easy to compute
- Works very well for BAI. Not many experiments beyond.
- Performs very well in practise

Two Interesting Points

Q: Is $\mu \mapsto w^*(\mu)$ always continuous? No!

Q: Is $\mu\mapsto w^*(\mu)$ always continuous? No!

For single-answer problems, can escalate to **set-valued mappings** and **upper hemi-continuity**. Tracking requires care.

Q: Is $\mu\mapsto w^*(\mu)$ always continuous? No!

For single-answer problems, can escalate to **set-valued mappings** and **upper hemi-continuity**. Tracking requires care.

For multiple-answer problems (including ϵ -BAI), continuity is unsalvageable.

Q: Is $\mu\mapsto w^*(\mu)$ always continuous? No!

For single-answer problems, can escalate to **set-valued mappings** and **upper hemi-continuity**. Tracking requires care.

For multiple-answer problems (including ϵ -BAI), continuity is unsalvageable.

Contributions in (Degenne and Koolen, 2019)

- A lower-bound with multiple correct answers (now max max inf).
- A new algorithm *Sticky Track-and-Stop* that asymptotically matches the lower bound.
- Explicit example where vanilla TaS fails (arcsine law)

Saddle Point Techniques

Standard technique: approximately solve saddle point problem

$$\max_{\boldsymbol{w} \in \triangle_{K}} \inf_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} \mathsf{KL}(\boldsymbol{\mu}_{i}, \lambda_{i})$$

iteratively using two online learners.

Saddle Point Techniques

Standard technique: approximately solve saddle point problem

$$\max_{\boldsymbol{w}\in \bigtriangleup_{\kappa}} \inf_{\boldsymbol{\lambda}\in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i, \lambda_i)$$

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

- Plug-in estimate $\hat{\mu}_t$ (so problem is **shifting**).
- Advance the saddle point solver by one iteration for every bandit interaction.
- Add optimism to gradients to induce exploration.
- Compose regret bound, concentration and optimism to get finite-confidence guarantee.

Saddle Point Techniques

Standard technique: approximately solve saddle point problem

$$\max_{\boldsymbol{w}\in \bigtriangleup_{\kappa}} \inf_{\boldsymbol{\lambda}\in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i, \lambda_i)$$

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

- Plug-in estimate $\hat{\mu}_t$ (so problem is **shifting**).
- Advance the saddle point solver by one iteration for every bandit interaction.
- Add optimism to gradients to induce exploration.
- Compose regret bound, concentration and optimism to get finite-confidence guarantee.

Implementation available in tidnabbil library. Analogue for regret in (Degenne, Shao, and Koolen, 2020) Thanks!

References

Castro, R. M. (Nov. 2014). "Adaptive sensing performance lower bounds for sparse signal detection and support estimation". In: *Bernoulli* 20.4, pp. 2217–2246.

Degenne, R. and W. M. Koolen (Dec. 2019). "Pure Exploration with Multiple Correct Answers". In: Advances in Neural Information Processing Systems (NeurIPS) 32,

pp. 14564-14573.

Degenne, R., W. M. Koolen, and P. Ménard (Dec. 2019). "Non-Asymptotic Pure Exploration by Solving Games". In: Advances in Neural Information Processing Systems (NeurIPS) 32, pp. 14465–14474.

Degenne, R., H. Shao, and W. M. Koolen (July 2020). "Structure Adaptive Algorithms for Stochastic Bandits". In: *Proceedings of the 37th International Conference on Machine Learning (ICML)*.

- Garivier, A. and E. Kaufmann (2016). "Optimal Best arm Identification with Fixed Confidence". In: *Proceedings of the* 29th Conference On Learning Theory (COLT).
- Kaufmann, E. and W. M. Koolen (Oct. 2018). "Mixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals". Preprint.
- Lai, T. L. and H. Robbins (1985). "Asymptotically efficient adaptive allocation rules". In: *Advances in Applied Mathematics* 6.1, pp. 4–22.