Pure Exploration Problems

Wouter Koolen

October 26th, 2020

I will discuss

- Instance-dependent results.
- Fixed confidence setting.
- Asymptotic confidence $\delta \rightarrow 0$ regime.

Context

Pure Exploration is statistical hypothesis testing

Maximise Reward

Gain Knowledge

Context

Pure Exploration is statistical hypothesis testing

Maximise Reward

Gain Knowledge

- ... on steroids:
 - Multiple
 - Composite
 - Sequential
 - Active

Introduce Pure Exploration problems.

Relate Pure Exploration to Reinforcement Learning.

Highlight some recent lessons learned.

Examples

Assumption: Bernoulli Multi-Armed Bandit

K Bernoulli arms with unknown means $\mu = (\mu_1, \dots, \mu_K) \in [0, 1]^K$.

Assumption: Bernoulli Multi-Armed Bandit

K Bernoulli arms with unknown means $\mu = (\mu_1, \dots, \mu_K) \in [0, 1]^K$.

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

Definition

Learner is δ -PAC if

$$\mathbb{P}_{\boldsymbol{\mu}}\Big\{\underbrace{\tau < \infty \text{ and } \hat{l} \neq \arg\max_{i} \mu_{i}}_{\text{a mistake}}\Big\} \leq \delta \quad \text{for all } \boldsymbol{\mu} \in [0, 1]^{K}.$$

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

Definition

Learner is δ -PAC if

$$\mathbb{P}_{\boldsymbol{\mu}}\Big\{\underbrace{\tau < \infty \text{ and } \hat{l} \neq \arg\max_{i} \mu_{i}}_{\text{a mistake}}\Big\} \leq \delta \quad \text{for all } \boldsymbol{\mu} \in [0, 1]^{K}.$$

Definition

We call $\mathbb{E}_{\mu}[\tau]$ the sample complexity of Learner in bandit μ .

BAI-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $A_t \in [K]$
- Learner observes $X_t \sim \text{Bernoulli}(\mu_{A_t})$

Learner recommends $\hat{l} \in [K]$.

Let $\tau \in \mathbb{N} \cup \{\infty\}$ denote the # rounds after which Learner stops.

Definition

Learner is δ -PAC if

$$\mathbb{P}_{\boldsymbol{\mu}}\Big\{\underbrace{\tau < \infty \text{ and } \hat{l} \neq \arg\max_{i} \mu_{i}}_{\text{a mistake}}\Big\} \leq \delta \quad \text{for all } \boldsymbol{\mu} \in [0, 1]^{K}.$$

Definition

We call $\mathbb{E}_{\mu}[\tau]$ the sample complexity of Learner in bandit μ .

Goal: efficient δ -PAC algorithms with minimal sample complexity.

Fancy Algorithm(δ)

Stop when ...

Sample arm $A_t = \dots$ Recommend $\hat{l} = \dots$

Fancy Algorithm (δ)

Stop when ... Sample arm $A_t = ...$ Recommend $\hat{l} = ...$

Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Fancy Algorithm (δ)

Stop when ... Sample arm $A_t = ...$ Recommend $\hat{l} = ...$ Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Theorem (comput. eff.)

 \dots runs in time $O(\dots)$

Fancy Algorithm (δ)

Stop when ... Sample arm $A_t = ...$ Recommend $\hat{l} = ...$

Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Theorem (comput. eff.) runs in time O(...)

Theorem (statistic. eff.)

... has sample complexity

 $\mathbb{E}_{\mu}[\tau] \leq f(\mu) \ln \frac{1}{\delta} + o(\ln \frac{1}{\delta}).$

Fancy Algorithm (δ)

Stop when ...

Sample arm $A_t = \dots$ Recommend $\hat{I} = \dots$

Theorem (lower bd)

Any δ -PAC algorithm needs sample complexity at least

 $\mathbb{E}_{\mu}[\tau] \geq f(\mu) \ln \frac{1}{\delta}$

Theorem (safe)

Fancy Algorithm(δ) is δ -PAC

Theorem (comput. eff.) runs in time O(...)

Theorem (statistic. eff.)

... has sample complexity

 $\mathbb{E}_{\mu}[\tau] \leq f(\mu) \ln rac{1}{\delta} + o(\ln rac{1}{\delta}).$

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{\text{th}}$ moment, \dots

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{th}$ moment, ...

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, ...

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{th}$ moment, ...

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, ...

Identify a near-optimal arm: Learner is (ϵ, δ) -PAC if

$$\mathbb{P}_{\mu}\left\{\underbrace{\tau < \infty \text{ and } \mu_{\hat{l}} < \max_{i} \mu_{i} - \epsilon}_{\text{a mistake}}\right\} \leq \delta \quad \text{for all } \mu \in [0, 1]^{\kappa}.$$

- Exponential Family: Gaussian, Gamma, Poisson, Geometric, ...
- Non-parametric: bounded support, sub-Gaussian, $(1 + \epsilon)^{th}$ moment, ...

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, ...

Identify a near-optimal arm: Learner is (ϵ, δ) -PAC if

$$\mathbb{P}_{\mu}\left\{\underbrace{\tau < \infty \text{ and } \mu_{\hat{l}} < \max_{i} \mu_{i} - \epsilon}_{\text{a mistake}}\right\} \leq \delta \quad \text{for all } \mu \in [0, 1]^{K}.$$

Feedback graphs (semi-bandit, ...)

Major Variations

MB

Assumption: Rectangular Multi-Armed Bandit

K imes M Bernoulli arms with unknown means $\mu \in [0,1]^{K imes M}$.

Assumption: Rectangular Multi-Armed Bandit

 $K \times M$ Bernoulli arms with unknown means $\mu \in [0, 1]^{K \times M}$.

NASH-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $(I_t, J_t) \in K \times M$
- Learner observes $X_t \sim \mu_{I_t,J_t}$

Learner recommends $(\hat{p}, \hat{q}) \in riangle_{\mathcal{K}} imes riangle_{\mathcal{M}}.$

Assumption: Rectangular Multi-Armed Bandit

 $K \times M$ Bernoulli arms with unknown means $\mu \in [0, 1]^{K \times M}$.

NASH-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks arm $(I_t, J_t) \in K \times M$
- Learner observes $X_t \sim \mu_{I_t,J_t}$

Learner recommends $(\hat{p}, \hat{q}) \in riangle_{\mathcal{K}} imes riangle_{\mathcal{M}}$.

We say that (\hat{p},\hat{q}) is an ϵ -approximate Nash equilibrium for μ if

$$\max_{\boldsymbol{p} \in \bigtriangleup_{\boldsymbol{K}}} \boldsymbol{p}^{\mathsf{T}} \boldsymbol{\mu} \hat{\boldsymbol{q}} - \min_{\boldsymbol{q} \in \bigtriangleup_{\boldsymbol{M}}} \hat{\boldsymbol{p}}^{\mathsf{T}} \boldsymbol{\mu} \boldsymbol{q} \leq \epsilon.$$

Problem

 (ϵ, δ) -PAC Nash equilibrium identification.

Assumption: Tree-Structured Multi-Armed Bandit

Given minimax tree \mathcal{T} with unknown Bernoulli μ_{ℓ} in each leaf ℓ .

Assumption: Tree-Structured Multi-Armed Bandit

Given minimax tree \mathcal{T} with unknown Bernoulli μ_{ℓ} in each leaf ℓ .

MINIMAX-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks a leaf L_t of T
- Learner observes $X_t \sim \mu_{L_t}$

Learner recommends child \hat{c} of the root of \mathcal{T} .

Assumption: Tree-Structured Multi-Armed Bandit

Given minimax tree \mathcal{T} with unknown Bernoulli μ_{ℓ} in each leaf ℓ .

MINIMAX-MAB Protocol

for $t = 1, 2, \dots$ until Learner decides to stop

- Learner picks a leaf L_t of T
- Learner observes $X_t \sim \mu_{L_t}$

Learner recommends child \hat{c} of the root of \mathcal{T} .

The optimal move at the root of $\mathcal T$ is

$$\mathcal{C}^*(oldsymbol{\mu}) \;=\; rg\max_i \min_j \max_k \dots \mu_{(i,j,k,\dots)}$$

Problem

 δ -PAC identification of optimal move at the root of \mathcal{T} .

Assumption: MDP

Known state space S, action space A and start state $s_0 \in S$. Unknown mean reward $\mu_{s,a}$ and transition dynamics P(s'|s, a).

Assumption: MDP

Known state space S, action space A and start state $s_0 \in S$. Unknown mean reward $\mu_{s,a}$ and transition dynamics P(s'|s,a).

BPI-RL Protocol

for t = 1, 2, ... until Learner decides to stop

- Learner picks a state $S_t \in S$ and action $A_t \in A$
- Learner observes $R_t \sim \mu_{S_t,A_t}$ and $S'_t \sim P(\cdot|S_t,A_t)$

Learner recommends policy $\hat{\pi} : S \to A$.

Assumption: MDP

Known state space S, action space A and start state $s_0 \in S$. Unknown mean reward $\mu_{s,a}$ and transition dynamics P(s'|s, a).

BPI-RL Protocol

for t = 1, 2, ... until Learner decides to stop

- Learner picks a state $S_t \in S$ and action $A_t \in A$
- Learner observes $R_t \sim \mu_{S_t,A_t}$ and $S'_t \sim P(\cdot|S_t,A_t)$

Learner recommends policy $\hat{\pi} : S \to A$.

The value function of policy π at discount factor $\gamma \in (0, 1)$ solves $V^{\pi}(s) = \mu_{s,\pi(s)} + \gamma \mathbb{E}_{s' \sim P(\cdot|s,\pi(s))} [V^{\pi}(s')]$. The optimal policy is $\pi^* = \arg \max_{\pi} V^{\pi}(s_0)$.

Problem

 δ -PAC identification of optimal policy π^* .

The Canonical Path to Instance-Optimal Algorithms

Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular) difference in the observations.

So being δ -PAC on μ and also on λ with $i^*(\mu) \neq i^*(\lambda)$ requires collecting enough discriminating information.

Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular) difference in the observations.

So being δ -PAC on μ and also on λ with $i^*(\mu) \neq i^*(\lambda)$ requires collecting enough discriminating information.

Define the *alternative* to μ by Alt $(\mu) \coloneqq \{\text{bandit } \lambda | i^*(\lambda) \neq i^*(\mu) \}$.

Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)

A (spectacular) difference in behaviour must be due to a (spectacular) difference in the observations.

So being δ -PAC on μ and also on λ with $i^*(\mu) \neq i^*(\lambda)$ requires collecting enough discriminating information.

Define the *alternative* to μ by Alt $(\mu) := \{ \text{bandit } \lambda | i^*(\lambda) \neq i^*(\mu) \}.$

Theorem (Castro 2014; Garivier and Kaufmann 2016) *Fix a* δ *-correct strategy. Then for every bandit model* $\mu \in \mathcal{M}$

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ \mathcal{T}^*(oldsymbol{\mu}) \ \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{T^*(\mu)} = \left(\max_{w \in \triangle_K} \min_{\lambda \in Alt(\mu)} \sum_{i=1}^K w_i \operatorname{KL}(\mu_i, \lambda_i) \right)$$

K = 5 Bernoulli arms, $\mu = (0.4, 0.3, 0.2, 0.1, 0.0)$.

$$T^*(\mu) = 200.4$$
 $w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At confidence $\delta=0.05$ we have $\ln \frac{1}{\delta}=3.0$ and hence $\mathbb{E}_{\mu}[\tau]\geq 601.2$.

Recall sample complexity lower bound at bandit μ governed by

$$\boxed{\max_{\boldsymbol{w}\in \bigtriangleup_{\kappa}}\min_{\boldsymbol{\lambda}\in\mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \,\mathsf{KL}(\mu_i,\lambda_i)}$$

Recall sample complexity lower bound at bandit μ governed by

$$\max_{\boldsymbol{w} \in \Delta_{\kappa}} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i, \lambda_i)$$

Matching algorithms must sample with **argmax** (*oracle*) proportions $w^*(\mu)$.

Track-and-Stop scheme (Garivier and Kaufmann, 2016)

At each time step t

- compute plug-in **oracle solution** $w^*(\hat{\mu}_t)$
- sample arm A_t to track (ensure $N_a(t)/t
 ightarrow w^*_a(\hat{\mu}_t)$)
- force exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.

Stop using GLRT stopping rule, recommend single non-rejected arm.

Track-and-Stop scheme (Garivier and Kaufmann, 2016)

At each time step t

- compute plug-in **oracle solution** $w^*(\hat{\mu}_t)$
- sample arm A_t to track (ensure $N_a(t)/t
 ightarrow w^*_a(\hat{\mu}_t)$)
- force exploration to ensure $\hat{\mu}_t
 ightarrow \mu$.

Stop using GLRT stopping rule, recommend single non-rejected arm.

Theorem (Asymptotic Instance-Optimality)

The sample complexity of Track-and-Stop for BAI is bounded by

 $\mathbb{E}_{\mu}[\tau] \leq T^{*}(\mu) \ln rac{1}{\delta} + o(\ln rac{1}{\delta})$

Analysis

Convergence $\hat{\mu}_t \rightarrow \mu$ and continuity of $\mu \mapsto w^*(\mu)$ ensures sampling proportion $N_a(t)/t$ approximates oracle $w^*_a(\mu)$. Why interested in asymptotically optimal algorithms?

- State-of-the-art performance in practise (some problems)
 - Best Arm Identification
 - Minimax Game Tree Search

Why interested in asymptotically optimal algorithms?

- State-of-the-art performance in practise (some problems)
 - Best Arm Identification
 - Minimax Game Tree Search
- Different ("fresh") structure compared to other techniques (confidence intervals, elimination, Thompson sampling, ...)

Why interested in asymptotically optimal algorithms?

- State-of-the-art performance in practise (some problems)
 - Best Arm Identification
 - Minimax Game Tree Search
- Different ("fresh") structure compared to other techniques (confidence intervals, elimination, Thompson sampling, ...)
- TaS reduces the identification problem to efficiently computing $w^*(\mu)$.

Three Interesting Points

Q: Is $\mu \mapsto w^*(\mu)$ always continuous? No!

Q: Is $\mu\mapsto w^*(\mu)$ always continuous? No!

For single-answer problems, can escalate to **set-valued mappings** and **upper hemi-continuity**. Tracking requires care.

Q: Is $\mu\mapsto w^*(\mu)$ always continuous? No!

For single-answer problems, can escalate to **set-valued mappings** and **upper hemi-continuity**. Tracking requires care.

For multiple-answer problems (including ϵ -BAI), continuity is unsalvageable.

Q: Is $\mu\mapsto w^*(\mu)$ always continuous? No!

For single-answer problems, can escalate to **set-valued mappings** and **upper hemi-continuity**. Tracking requires care.

For multiple-answer problems (including ϵ -BAI), continuity is unsalvageable.

Contributions in (Degenne and Koolen, 2019)

- A lower-bound with multiple correct answers (now max max min).
- A new algorithm *Sticky Track-and-Stop* that asymptotically matches the lower bound.
- Explicit example where vanilla TaS fails (arcsine law)

Saddle Point Techniques

Standard technique: approximately solve saddle point problem

$$\max_{\boldsymbol{w} \in \Delta_{\kappa}} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i, \lambda_i)$$

iteratively using two online learners.

Saddle Point Techniques

Standard technique: approximately solve saddle point problem

$$\max_{\boldsymbol{w}\in \Delta_{\kappa}}\min_{\boldsymbol{\lambda}\in\mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i,\lambda_i)$$

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

- Plug-in estimate $\hat{\mu}_t$ (so problem is **shifting**).
- Advance the saddle point solver by one iteration for every bandit interaction.
- Add optimism to gradients to induce exploration.
- Compose regret bound, concentration and optimism to get finite-confidence guarantee.

Saddle Point Techniques

Standard technique: approximately solve saddle point problem

$$\max_{\boldsymbol{w} \in \Delta_{\kappa}} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_i \operatorname{KL}(\mu_i, \lambda_i)$$

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

- Plug-in estimate $\hat{\mu}_t$ (so problem is **shifting**).
- Advance the saddle point solver by one iteration for every bandit interaction.
- Add optimism to gradients to induce exploration.
- Compose regret bound, concentration and optimism to get finite-confidence guarantee.

Analogue for regret in (Degenne, Shao, and Koolen, 2020) Implementation available in tidnabbil library. (Agrawal, Koolen, and Juneja, 2020) look at identifying the arm of minimum CVaR in a **non-parametric** setting with heavy tails.

The dual of the lower bound problem gives a natural collection of martingales. The mixture martingale method then gives the deviation inequalities for the stopping rule threshold.

Open Problems

- "Pure Exploration Compiler"
 - query
 - structure (prior knowledge) assumptions
- Moderate confidence regime (i.e. dependence in problem parameters other than $\delta)$
- Scaling back up: subroutines for planning systems

Thanks!

References

 Agrawal, S., W. M. Koolen, and S. Juneja (Aug. 2020).
 "Optimal Best-Arm Identification Methods for Tail-Risk Measures". In: ArXiv.

- Castro, R. M. (Nov. 2014). "Adaptive sensing performance lower bounds for sparse signal detection and support estimation". In: *Bernoulli* 20.4, pp. 2217–2246.
- Degenne, R. and W. M. Koolen (Dec. 2019). "Pure Exploration with Multiple Correct Answers". In: Advances in Neural Information Processing Systems (NeurIPS) 32, pp. 14564–14573.

Degenne, R., W. M. Koolen, and P. Ménard (Dec. 2019). "Non-Asymptotic Pure Exploration by Solving Games". In: Advances in Neural Information Processing Systems (NeurIPS) 32, pp. 14465–14474.

Degenne, R., H. Shao, and W. M. Koolen (July 2020). "Structure Adaptive Algorithms for Stochastic Bandits". In: Proceedings of the 37th International Conference on Machine Learning (ICML).

- Garivier, A. and E. Kaufmann (2016). "Optimal Best arm Identification with Fixed Confidence". In: *Proceedings of the* 29th Conference On Learning Theory (COLT).
- Lai, T. L. and H. Robbins (1985). "Asymptotically efficient adaptive allocation rules". In: *Advances in Applied Mathematics* 6.1, pp. 4–22.