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Expectation Management for the Experts

I will discuss

• Instance-dependent results.
• Fixed confidence setting.
• Asymptotic confidence δ → 0 regime.



Context

Pure Exploration is statistical hypothesis testing . . .

Maximise Reward Gain Knowledge

. . . on steroids:

• Multiple
• Composite
• Sequential
• Active
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Menu

Introduce Pure Exploration problems.

Relate Pure Exploration to Reinforcement Learning.

Highlight some recent lessons learned.



Examples



Best Arm Identification (BAI)

Assumption: Bernoulli Multi-Armed Bandit
K Bernoulli arms with unknown means µ = (µ1, . . . , µK) ∈ [0,1]K .

BAI-MAB Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks arm At ∈ [K]
• Learner observes Xt ∼ Bernoulli(µAt)

Learner recommends Î ∈ [K].
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BAI-MAB Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks arm At ∈ [K]
• Learner observes Xt ∼ Bernoulli(µAt)

Learner recommends Î ∈ [K].

Let τ ∈ N ∪ {∞} denote the # rounds after which Learner stops.

Definition
Learner is δ-PAC if

Pµ
{
τ <∞ and Î 6= argmaxi µi︸ ︷︷ ︸

a mistake

}
≤ δ for all µ ∈ [0,1]K .

Definition
We call Eµ[τ ] the sample complexity of Learner in bandit µ.

Goal: efficient δ-PAC algorithms with minimal sample complexity.
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Best Arm Identification, prototypical solution

Goal: efficient δ-PAC algorithms with minimal sample complexity.

Fancy Algorithm(δ)

Stop when . . .
Sample arm At = . . .

Recommend Î = . . .

Theorem (lower bd)
Any δ-PAC algorithm needs
sample complexity at least

Eµ[τ ] ≥ f (µ) ln 1
δ

Theorem (safe)
Fancy Algorithm(δ) is δ-PAC

Theorem (comput. eff.)
. . . runs in time O(. . . )

Theorem (statistic. eff.)
. . . has sample complexity

Eµ[τ ] ≤ f (µ) ln 1
δ + o(ln 1

δ ).
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Theorem (lower bd)
Any δ-PAC algorithm needs
sample complexity at least

Eµ[τ ] ≥ f (µ) ln 1
δ

Theorem (safe)
Fancy Algorithm(δ) is δ-PAC

Theorem (comput. eff.)
. . . runs in time O(. . . )

Theorem (statistic. eff.)
. . . has sample complexity

Eµ[τ ] ≤ f (µ) ln 1
δ + o(ln 1

δ ).



Many Variations of BAI Problem in Literature

Assumptions about arm distributions

• Exponential Family:
Gaussian, Gamma, Poisson, Geometric, . . .

• Non-parametric:
bounded support, sub-Gaussian, (1+ ε)th moment, . . .

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, . . .

Identify a near-optimal arm: Learner is (ε, δ)-PAC if

Pµ
{
τ <∞ and µÎ < maxi µi − ε︸ ︷︷ ︸

a mistake

}
≤ δ for all µ ∈ [0,1]K .

Feedback graphs (semi-bandit, . . . )
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τ <∞ and µÎ < maxi µi − ε︸ ︷︷ ︸

a mistake

}
≤ δ for all µ ∈ [0,1]K .

Feedback graphs (semi-bandit, . . . )



Many Variations of BAI Problem in Literature

Assumptions about arm distributions

• Exponential Family:
Gaussian, Gamma, Poisson, Geometric, . . .

• Non-parametric:
bounded support, sub-Gaussian, (1+ ε)th moment, . . .

Assume prior knowledge of structured bandit model class

• Linear, Lipschitz, Sparse, Categorical, Unimodal, . . .

Identify a near-optimal arm: Learner is (ε, δ)-PAC if

Pµ
{
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Major Variations

Nash Equilibrium Shortest Path

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

START

Gold

Stench

Minimax Tree Search Markov Decision Process



Nash Equilibrium Identification Problem

Assumption: Rectangular Multi-Armed Bandit
K ×M Bernoulli arms with unknown means µ ∈ [0,1]K×M.

NASH-MAB Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks arm (It, Jt) ∈ K ×M
• Learner observes Xt ∼ µIt,Jt

Learner recommends (p̂, q̂) ∈ 4K ×4M.

We say that (p̂, q̂) is an ε-approximate Nash equilibrium for µ if

max
p∈4K

pᵀµq̂ − min
q∈4M

p̂ᵀµq ≤ ε.

Problem
(ε, δ)-PAC Nash equilibrium identification.
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Minimax Action Identification Problem

Assumption: Tree-Structured Multi-Armed Bandit
Given minimax tree T with unknown Bernoulli µ` in each leaf `.

MINIMAX-MAB Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks a leaf Lt of T
• Learner observes Xt ∼ µLt

Learner recommends child ĉ of the root of T .

The optimal move at the root of T is

c∗(µ) = argmax
i

min
j

max
k
. . . µ(i,j,k,... )

Problem
δ-PAC identification of optimal move at the root of T .
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Optimal Policy Identification Problem

Breeze Breeze

Breeze

Breeze
Breeze

Stench

Stench

Breeze
PIT

PIT

PIT

START

Gold

Stench

Assumption: MDP
Known state space S, action space A and start state s0 ∈ S.
Unknown mean reward µs,a and transition dynamics P(s′|s,a).

BPI-RL Protocol
for t = 1,2, . . . until Learner decides to stop
• Learner picks a state St ∈ S and action At ∈ A
• Learner observes Rt ∼ µSt,At and S′t ∼ P(·|St,At)

Learner recommends policy π̂ : S → A.

The value function of policy π at discount factor γ ∈ (0,1) solves
Vπ(s) = µs,π(s) + γ Es′∼P(·|s,π(s)) [Vπ(s′)]. The optimal policy is
π∗ = argmaxπ Vπ(s0).

Problem
δ-PAC identification of optimal policy π∗.
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The Canonical Path to
Instance-Optimal
Algorithms



Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)
A (spectacular) difference in behaviour must be due to a
(spectacular) difference in the observations.

So being δ-PAC on µ and also on λ with i∗(µ) 6= i∗(λ) requires
collecting enough discriminating information.

Define the alternative to µ by Alt(µ) := {bandit λ|i∗(λ) 6= i∗(µ)}.

Theorem (Castro 2014; Garivier and Kaufmann 2016)
Fix a δ-correct strategy. Then for every bandit model µ ∈M

Eµ[τ ] ≥ T∗(µ) ln
1
δ

where the characteristic time T∗(µ) is given by

1
T∗(µ)

= max
w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi, λi)
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Example

K = 5 Bernoulli arms, µ = (0.4,0.3,0.2,0.1,0.0).

T∗(µ) = 200.4 w∗(µ) = (0.45,0.46,0.06,0.02,0.01)

At confidence δ = 0.05 we have ln 1
δ = 3.0 and hence

Eµ[τ ] ≥ 601.2.



Lower Bounds Inspire Strategies

Recall sample complexity lower bound at bandit µ governed by

max
w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi, λi)

Matching algorithms must sample with argmax (oracle)
proportions w∗(µ).
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Lower Bounds Inspire Strategies

Track-and-Stop scheme (Garivier and Kaufmann, 2016)

At each time step t

• compute plug-in oracle solution w∗(µ̂t)
• sample arm At to track (ensure Na(t)/t → w∗a(µ̂t))
• force exploration to ensure µ̂t → µ.

Stop using GLRT stopping rule, recommend single non-rejected
arm.

Theorem (Asymptotic Instance-Optimality)
The sample complexity of Track-and-Stop for BAI is bounded by

Eµ[τ ] ≤ T∗(µ) ln 1
δ + o(ln 1

δ )

Analysis
Convergence µ̂t → µ and continuity of µ 7→ w∗(µ) ensures
sampling proportion Na(t)/t approximates oracle w∗a(µ).
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Asymptotic Optimality

Why interested in asymptotically optimal algorithms?

• State-of-the-art performance in practise (some problems)
• Best Arm Identification
• Minimax Game Tree Search

• Different (“fresh”) structure compared to other techniques
(confidence intervals, elimination, Thompson sampling, . . . )

• TaS reduces the identification problem to efficiently
computing w∗(µ).
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Three Interesting Points



Sticky Track-and-Stop for Multiple Correct Answers

Q: Is µ 7→ w∗(µ) always continuous? No!

For single-answer problems, can escalate to set-valued
mappings and upper hemi-continuity. Tracking requires
care.

For multiple-answer problems (including ε-BAI), continuity is
unsalvageable.

Contributions in (Degenne and Koolen, 2019)

• A lower-bound with multiple correct answers (now
maxmaxmin).

• A new algorithm Sticky Track-and-Stop that asymptotically
matches the lower bound.

• Explicit example where vanilla TaS fails (arcsine law)
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Saddle Point Techniques

Standard technique: approximately solve saddle point problem

max
w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi, λi)

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

• Plug-in estimate µ̂t (so problem is shifting).
• Advance the saddle point solver by one iteration for every
bandit interaction.

• Add optimism to gradients to induce exploration.
• Compose regret bound, concentration and optimism to get
finite-confidence guarantee.

Analogue for regret in (Degenne, Shao, and Koolen, 2020)
Implementation available in tidnabbil library.

https://bitbucket.org/wmkoolen/tidnabbil
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Martingales, GLRT and T∗

(Agrawal, Koolen, and Juneja, 2020) look at identifying the arm
of minimum CVaR in a non-parametric setting with heavy tails.

The dual of the lower bound problem gives a natural collection
of martingales. The mixture martingale method then gives the
deviation inequalities for the stopping rule threshold.



Open Problems



Open problems

• “Pure Exploration Compiler”
• query
• structure (prior knowledge) assumptions

• Moderate confidence regime (i.e. dependence in problem
parameters other than δ)

• Scaling back up: subroutines for planning systems



Thanks!
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