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Expectation Management for the Experts

I will discuss

* Instance-dependent results.
* Fixed confidence setting.

* Asymptotic confidence § — 0 regime.
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Context

Pure Exploration is

Maximise Reward Gain Knowledge

...on steroids:

e Multiple

* Composite
e Sequential
* Active



Introduce Pure Exploration problems.
Relate Pure Exploration to Reinforcement Learning.

Highlight some recent lessons learned.



Examples
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Best Arm Identification, prototypical solution

. efficient 0-PAC algorithms with minimal sample complexity.

Fancy Algorithm(J) Theorem (safe)
Stop when ... Fancy Algorithm(d) is §-PAC
Sample arm A; = ...

e = Theorem (comput. eff.)

...runs in time O(...)
Theorem (lower bd)
Any 6-PAC algorithm needs Theorem (statistic. eff.)
sample complexity at least ... has sample complexity

Eulr] > f(u)Inl Eulr] < f(p)In: +o(ind).
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Feedback graphs (semi-bandit, ...)
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Nash Equilibrium Identification Problem = )

¢z

Assumption: Rectangular Multi-Armed Bandit
K x M Bernoulli arms with unknown means p € [0, 1]<*M.

NASH-MAB Protocol

fort=1,2,... until Learner decides to stop
» Learner picks arm (It,Jt) € K x M
* Learner observes X: ~ py, j,

Learner recommends (P, §) € Ng X Ap.

We say that (p, §) is an e-approximate Nash equilibrium for p if

max pTug — mln PTug < e
pENK

Problem
(e,0)-PAC Nash equilibrium identification.
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®O ®O®®O
AMAX g MIN - (@)is (1)

Assumption: Tree-Structured Multi-Armed Bandit
Given minimax tree 7 with unknown Bernoulli i, in each leaf 4.

MINIMAX-MAB Protocol

fort=1,2,... until Learner decides to stop
e Learner picks a leaf L; of T
* Learner observes X; ~ py,

Learner recommends child ¢ of the root of 7.

The optimal move at the root of 7 is

c*(p) = argmaxmin Max... f(ijk,..)
i

Problem
0-PAC identification of optimal move at the root of T.
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Optimal Policy Identification Problem

Assumption: MDP

Known state space S, action space A and start state sg € S.
Unknown mean reward us , and transition dynamics P(s'|s, a).

BPI-RL Protocol

fort=1,2,... until Learner decides to stop
e Learner picks a state S; € S and action A; € A
» Learner observes R; ~ s, a, and S; ~ P(-|St, A¢)

Learner recommends policy 7 : S — A.

The value function of policy = at discount factor v € (0, 1) solves
V7(S) = ps,n(s) + 7 Esnp(|s,x(s)) [VT(S')]. The optimal policy is

" = argmax, V™ (So).

Problem

0-PAC identification of optimal policy =*.



The Canonical Path to
Instance-Optimal
Algorithms
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Instance-Dependent Sample Complexity Lower Bound

Intuition, going back at least to Lai and Robbins (1985)
A (spectacular) difference in behaviour be due to a
(spectacular) difference in the observations.

So being §-PAC on p and also on A with i*(u) # i*(X)
collecting enough discriminating information.

Define the alternative to u by Alt(u) := {bandit A|i*(X) # i*(p)}-

Theorem (Castro 2014; Garivier and Kaufmann 2016)
Fix a 6-correct strategy. Then for every bandit model u € M

Bulr] > T() 3

where the characteristic time T*(u) is given by

K
- ' KL (i, Ai
Tr(i) | ek achitn) E;w (11, 1)



K =5 Bernoulli arms, = (0.4,0.3,0.2,0.1,0.0).

T*(p) = 2004  w*(u) = (0.45,0.46,0.06,0.02,0.01)

At confidence § = 0.05 we have |n% = 3.0 and hence
E.[r] > 601.2.
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Lower Bounds Inspire Strategies

Recall sample complexity lower bound at bandit  governed by
we Ak AEAIt(p)

K
max min ZWIKL(N/")V)
i=1

Matching algorithms must sample with argmax (oracle)
proportions w*(u).
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Stop using GLRT stopping rule, recommend single non-rejected
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Track-and-Stop scheme (Garivier and Kaufmann, 2016)
At each time step t

» compute plug-in oracle solution w* (/i)
* sample arm A to track (ensure N,(t)/t — wi(fit))
» force exploration to ensure fi: — p.

Stop using GLRT stopping rule, recommend single non-rejected
arm.

Theorem (Asymptotic Instance-Optimality)
The sample complexity of Track-and-Stop for BAl is bounded by

Eu[r] < T*(n)In % +o(In 3)
Analysis

Convergence fi; — p and continuity of p — w*(u) ensures
sampling proportion N,(t)/t approximates oracle w(u).
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Asymptotic Optimality

Why interested in asymptotically optimal algorithms?

» State-of-the-art performance in practise (some problems)
* Best Arm Identification
* Minimax Game Tree Search
* Different (“fresh”) structure compared to other techniques
(confidence intervals, elimination, Thompson sampling, ...)

* TaS reduces the identification problem to efficiently
computing w* ().
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Q: Is p — w*(u) always continuous? No!

For single-answer problems, can escalate to set-valued
mappings and upper hemi-continuity. Tracking requires
care.

For multiple-answer problems (including e-BAl), continuity is
unsalvageable.

Contributions in (Degenne and Koolen, 2019)
* A lower-bound with multiple correct answers (now
max max min).

* A new algorithm Sticky Track-and-Stop that asymptotically
matches the lower bound.

* Explicit example where vanilla TaS fails (arcsine law)
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Saddle Point Techniques

Standard technique: approximately solve saddle point problem

K
SR 2y 2 )

iteratively using two online learners.

Main pipeline (Degenne, Koolen, and Ménard, 2019):

e Plug-in estimate fi; (so problem is shifting).

* Advance the saddle point solver by one iteration for every
bandit interaction.

* Add optimism to gradients to induce exploration.

e Compose regret bound, concentration and optimism to get
finite-confidence guarantee.

Analogue for regret in (Degenne, Shao, and Koolen, 2020)
Implementation available in tidnabbil library.


https://bitbucket.org/wmkoolen/tidnabbil

Martingales, GLRT and T*

(Agrawal, Koolen, and Juneja, 2020) look at identifying the arm
of minimum CVaR in a non-parametric setting with heavy tails.

The dual of the lower bound problem gives a natural collection
of martingales. The mixture martingale method then gives the
deviation inequalities for the stopping rule threshold.
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Open problems

* “Pure Exploration Compiler”
e query
e structure (prior knowledge) assumptions

* Moderate confidence regime (i.e. dependence in problem
parameters other than §)

e Scaling back up: subroutines for planning systems



Thanks!
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