Simons Tutorial: Online Learning and Bandits Part I

Wouter Koolen and Alan Malek

August 31st, 2020

Positioning this Tutorial

- · Building up tools in support of RL
- Exploring surrounding viewpoints, problems and methods
- Soaking up "Culture"

Working Definitions

Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.

Working Definitions

Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.

Main distinction: model of environment

- Reinforcement Learning action affects future state
- Bandits action affects observation
- Full Inf. Online Learning action affects reward

On the Menu

Two parts:

- (1) Full Information Online Learning
- (2) Bandits (w. Alan Malek)

Full Information Online Learning

1. Two Basic Problems

Online Convex Optimisation; Online Gradient Descent The Experts Problem; Exponential Weights

2. Two Peeks Beyond the Basics

Follow the Regularised Leader and Mirror Descent Online Quadratic Optimisation; Online Newton Step

3. Applications

Classical Optimisation

Stochastic Optimisation

Saddle Points in Two-player Zero-Sum Games

4. Conclusion and Extensions

Two Basic Problems

Setup

- Focus on losses (negative rewards)
- Model Environment as Adversary
- Online Convex Optimisation (OCO) abstraction.

OCO Problem

Protocol: Online Convex Optimisation

Given: game length T, convex action space $\mathcal{U} \subseteq \mathbb{R}^d$

For t = 1, 2, ..., T,

- ullet The learner picks action $oldsymbol{w}_t \in \mathcal{U}$
- The adversary picks convex loss $f_t:\mathcal{U} \to \mathbb{R}$
- The learner observes $f_t ext{ } ext{dill information}$
- The learner incurs loss $f_t(w_t)$

OCO Problem

Protocol: Online Convex Optimisation

Given: game length T, convex action space $\mathcal{U} \subseteq \mathbb{R}^d$

For t = 1, 2, ..., T,

- The learner picks action $w_t \in \mathcal{U}$
- The adversary picks convex loss $f_t:\mathcal{U} \to \mathbb{R}$
- The learner observes $f_t \triangleleft \text{full information}$
- The learner incurs loss $f_t(w_t)$

The goal: control the regret (w.r.t. the best point after T rounds)

$$\mathcal{R}_{\mathcal{T}} = \sum_{t=1}^{\mathcal{T}} f_t(w_t) - \min_{oldsymbol{u} \in \mathcal{U}} \sum_{t=1}^{\mathcal{T}} f_t(oldsymbol{u})$$

using a computationally efficient algorithm for learner.

Design Principle

Learner needs to "chase" the best point $\arg\min_{u\in\mathcal{U}}\sum_{t=1}^{T}f_t(w_t)$. But doing so naively overfits.

Idea: add regularisation. Two manifestations:

- · Penalise excentricity "FTRL style"
- · Update iterates, but only slowly "MD style"

Will see examples of both. For our purposes, these are roughly equivalent

Online Gradient Descent (OGD) Algorithm

Let \mathcal{U} be a convex set containing 0. Fix a learning rate $\eta > 0$.

Algorithm: Online Gradient Descent (OGD)

OGD with learning rate $\eta > 0$ plays

$$oldsymbol{w}_1 = oldsymbol{0} \quad ext{ and } \quad oldsymbol{w}_{t+1} \ = \ \Pi_{\mathcal{U}} \left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t)
ight)$$

where $\Pi_{\mathcal{U}}(w) = \mathop{\sf arg\,min}_{u \in \mathcal{U}} \|u - w\|$ is the projection onto \mathcal{U} .

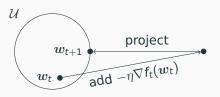


Figure 1: OGD update

Algorithm: OGD

$$w_1 = 0$$
 and $w_{t+1} = \Pi_{\mathcal{U}} \left(w_t - \eta
abla f_t(w_t)
ight)$

Assumption: Boundedness

Bounded domain $\max_{u \in \mathcal{U}} ||u|| \leq D$ and gradients $||\nabla f_t(w_t)|| \leq G$.

Algorithm: OGD

$$w_1 = 0$$
 and $w_{t+1} = \Pi_{\mathcal{U}} \left(w_t - \eta
abla f_t(w_t)
ight)$

Assumption: Boundedness

Bounded domain $\max_{u \in \mathcal{U}} ||u|| \leq D$ and gradients $||\nabla f_t(w_t)|| \leq G$.

Theorem (OGD regret bd, Zinkevich 2003)

$$\mathcal{R}_{T} = \sum_{t=1}^{T} f_{t}(w_{t}) - \min_{u \in \mathcal{U}} \sum_{t=1}^{T} f_{t}(u) \leq \frac{1}{2\eta} D^{2} + \frac{\eta}{2} TG^{2}$$

Algorithm: OGD

$$oldsymbol{w}_1 = oldsymbol{0}$$
 and $oldsymbol{w}_{t+1} = oldsymbol{\Pi}_{\mathcal{U}} \left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t)
ight)$

Assumption: Boundedness

Bounded domain $\max_{u \in \mathcal{U}} \|u\| \le D$ and gradients $\|\nabla f_t(w_t)\| \le G$.

Theorem (OGD regret bd, Zinkevich 2003)

$$\mathcal{R}_{T} = \sum_{t=1}^{T} f_{t}(w_{t}) - \min_{u \in \mathcal{U}} \sum_{t=1}^{T} f_{t}(u) \leq \frac{1}{2\eta} D^{2} + \frac{\eta}{2} TG^{2}$$

Corollary

Tuning
$$\eta = \frac{D}{G\sqrt{T}}$$
 results in $\mathcal{R}_T \leq DG\sqrt{T}$.

Algorithm: OGD

$$oldsymbol{w}_1 = oldsymbol{0}$$
 and $oldsymbol{w}_{t+1} = oldsymbol{\Pi}_{\mathcal{U}} \left(oldsymbol{w}_t - \eta
abla f_t(oldsymbol{w}_t)
ight)$

Assumption: Boundedness

Bounded domain $\max_{u \in \mathcal{U}} \|u\| \leq D$ and gradients $\|\nabla f_t(w_t)\| \leq G$.

Theorem (OGD regret bd, Zinkevich 2003)

$$\mathcal{R}_{T} = \sum_{t=1}^{T} f_{t}(w_{t}) - \min_{u \in \mathcal{U}} \sum_{t=1}^{T} f_{t}(u) \leq \frac{1}{2\eta} D^{2} + \frac{\eta}{2} TG^{2}$$

Corollary

Tuning
$$\eta = \frac{D}{G\sqrt{T}}$$
 results in $\mathcal{R}_T \leq DG\sqrt{T}$.

Sublinear regret: learning overhead per round \rightarrow 0.

Proof of OGD regret bound

Using convexity, we may analyse the tangent upper bound

$$f_t(w_t) - f_t(u) \leq \langle w_t - u, \nabla f_t(w_t) \rangle$$

Moreover,

$$\begin{aligned} \left\| w_{t+1} - u \right\|^2 &= \left\| \Pi_{\mathcal{U}} \left(w_t - \eta \nabla f_t(w_t) \right) - u \right\|^2 \\ &\leq \left\| w_t - \eta \nabla f_t(w_t) - u \right\|^2 \\ &= \left\| w_t - u \right\|^2 - 2\eta \langle w_t - u, \nabla f_t(w_t) \rangle + \eta^2 \|\nabla f_t(w_t)\|^2 \end{aligned}$$

Hence

$$\left\langle w_t - u,
abla f_t(w_t)
ight
angle \ \leq \ rac{\left\| w_t - u
ight\|^2 - \left\| w_{t+1} - u
ight\|^2}{2\eta} + rac{\eta}{2} \left\|
abla f_t(w_t)
ight\|^2$$

Proof of OGD regret bound (ctd)

Summing over T rounds, we find

$$egin{aligned} \mathcal{R}_{T}^{u} & \leq & \sum_{t=1}^{T} \langle w_{t} - u,
abla f_{t}(w_{t})
angle \ & \leq & \sum_{t=1}^{T} rac{\left\| w_{t} - u
ight\|^{2} - \left\| w_{t+1} - u
ight\|^{2}}{2\eta} + rac{\eta}{2} \sum_{t=1}^{T} \left\|
abla f_{t}(w_{t})
ight\|^{2} \ & \leq & rac{\left\| u
ight\|^{2} - \left\| w_{T+1} - u
ight\|^{2}}{2\eta} + rac{\eta}{2} \sum_{t=1}^{T} \left\|
abla f_{t}(w_{t})
ight\|^{2} \ & \leq & rac{D^{2}}{2\eta} + rac{\eta}{2} TG^{2} \end{aligned}$$

Is OGD regret bound of $\mathcal{R}_{\mathcal{T}} \leq \textit{GD}\sqrt{\textit{T}}$ any good?

Is OGD regret bound of $\mathcal{R}_T \leq GD\sqrt{T}$ any good? Scaling with G and D is natural. What about \sqrt{T} ?

Is OGD regret bound of $\mathcal{R}_T \leq \textit{GD}\sqrt{T}$ any good?

Scaling with G and D is natural. What about \sqrt{T} ?

Theorem

Any OCO algorithm can be made to incur $\mathcal{R}_T = \Omega(\sqrt{T})$.

Is OGD regret bound of $\mathcal{R}_T \leq \textit{GD}\sqrt{T}$ any good?

Scaling with G and D is natural. What about \sqrt{T} ?

Theorem

Any OCO algorithm can be made to incur $\mathcal{R}_T = \Omega(\sqrt{T})$.

Proof (by probabilistic argument).

Consider interval $\mathcal{U}=[-1,1]$ and linear losses $f_t(u)=x_t\cdot u$ with i.i.d. Rademacher coefficients $x_t\in\{\pm 1\}$. Any algorithm has expected loss zero. The expected loss of the best action (± 1) is $-\mathbb{E}[|\sum_{t=1}^T x_t|] = -\Omega(\sqrt{T})$. Then as the expected regret is $\mathbb{E}[\mathcal{R}_T] = \Omega(\sqrt{T})$, there is a deterministic witness.

Here, the regret arises from *overfitting* of the best point.

OGD Discussion

- · Adversarial result, super strong!
- Proof reveals it is really about linear losses.
- Matching lower bounds

Successful in practise:

 Practically all deep learning uses versions of online gradient descent (e.g. TensorFlow has AdaGrad [Duchi et al., 2011]) even though objective not convex.

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

- Decision Theoretic Online Learning
- Experts setting (also: Hedge setting)
- Prediction with Expert Advice

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

- Decision Theoretic Online Learning
- Experts setting (also: Hedge setting)
- · Prediction with Expert Advice

Protocol: Prediction With Expert Advice

Given: game length T, number K of experts

For
$$t = 1, 2, ..., T$$
,

- Learner chooses a distribution $w_t \in \triangle_K$ on K "experts".
- Adversary reveals loss vector $\ell_t \in [0, 1]^K$.
- Learner's loss is the **dot loss** $w_t^\intercal \ell_t = \sum_{k=1}^K \mathsf{w}_t^k \ell_t^k$

From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

- Decision Theoretic Online Learning
- Experts setting (also: Hedge setting)
- · Prediction with Expert Advice

Protocol: Prediction With Expert Advice

Given: game length T, number K of experts

For
$$t = 1, 2, ..., T$$
,

- Learner chooses a distribution $w_t \in \triangle_K$ on K "experts".
- Adversary reveals loss vector $\ell_t \in [0, 1]^K$.
- Learner's loss is the **dot loss** $w_t^\intercal \ell_t = \sum_{k=1}^K w_t^k \ell_t^k$

The goal: control the regret (w.r.t. the best expert after T rounds)

$$\mathcal{R}_T = \sum_{t=1}^T w_t^\intercal \ell_t - \min_{k \in [K]} \sum_{t=1}^T \ell_t^k$$

using a computationally efficient algorithm for learner.

Let's apply what we know

Observations:

- Dot loss $u\mapsto u^\intercal\ell_t$ is *linear* (hence convex).
- Gradient $\ell_t \in [0,1]^K$ bounded by $\|\ell_t\| \leq \sqrt{K}$.
- Probability simplex \triangle_K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with D=1 and $G=\sqrt{K}$ gives $\mathcal{R}_T \leq \sqrt{KT}$.

Let's apply what we know

Observations:

- Dot loss $u\mapsto u^\intercal\ell_t$ is *linear* (hence convex).
- Gradient $\ell_t \in [0,1]^K$ bounded by $\|\ell_t\| \leq \sqrt{K}$.
- Probability simplex \triangle_K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with D=1 and $G=\sqrt{K}$ gives $\mathcal{R}_T \leq \sqrt{KT}$.

Q: Optimal?

Let's apply what we know

Observations:

- Dot loss $u\mapsto u^\intercal\ell_t$ is *linear* (hence convex).
- Gradient $\ell_t \in [0,1]^K$ bounded by $\|\ell_t\| \leq \sqrt{K}$.
- Probability simplex \triangle_K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with
$$D=1$$
 and $G=\sqrt{K}$ gives $\mathcal{R}_T \leq \sqrt{KT}$.

Q: Optimal?

Maybe not. There are no points with loss difference \sqrt{K} in the simplex ...

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)

EW with *learning rate* $\eta > 0$ plays weights in round t:

$$w_t^k = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell_s^k}}{\sum_{j=1}^K e^{-\eta \sum_{s=1}^{t-1} \ell_s^j}}.$$
 (EW)

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)

EW with *learning rate* $\eta > 0$ plays weights in round t:

$$w_t^k = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell_s^k}}{\sum_{i=1}^K e^{-\eta \sum_{s=1}^{t-1} \ell_s^i}}.$$
 (EW)

or, equivalently, $w_1^k = \frac{1}{K}$ and

$$w_{t+1}^{k} = \frac{w_{t}^{k} e^{-\eta \ell_{t}^{i}}}{\sum_{j=1}^{K} w_{t}^{j} e^{-\eta \ell_{t}^{j}}}$$
 (EW, incremental)

Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)

EW with *learning rate* $\eta > 0$ plays weights in round t:

$$w_t^k = \frac{e^{-\eta \sum_{s=1}^{t-1} \ell_s^k}}{\sum_{i=1}^K e^{-\eta \sum_{s=1}^{t-1} \ell_s^i}}.$$
 (EW)

or, equivalently, $w_1^k = \frac{1}{K}$ and

$$w_{t+1}^{k} = \frac{w_{t}^{k} e^{-\eta \ell_{t}^{i}}}{\sum_{j=1}^{K} w_{t}^{j} e^{-\eta \ell_{t}^{j}}}$$

(EW, incremental)

Theorem (EW regret bd, Freund and Schapire 1997)

The regret of EW is bounded by $\mathcal{R}_T \leq \frac{\ln K}{\eta} + T\frac{\eta}{8}$.

Corollary

Tuning $\eta = \sqrt{\frac{8 \ln K}{T}}$ yields $\mathcal{R}_T \leq \sqrt{T/2 \ln K}$.

EW Analysis

Applying Hoeffding's Lemma to the loss of each round gives

$$\sum_{t=1}^{T} w_t^{\mathsf{T}} \ell_t \ \leq \ \sum_{t=1}^{T} \left(\underbrace{\frac{-1}{\eta} \ln \left(\sum_{k=1}^{K} w_t^k \mathrm{e}^{-\eta \ell_t^k} \right)}_{\text{``mix loss''}} + \underbrace{\eta/8}_{\text{overhead}} \right)$$

Crucial observation is that cumulative mix loss telescopes

$$\begin{split} \sum_{t=1}^{T} \frac{-1}{\eta} \ln \left(\sum_{k=1}^{K} w_{t}^{k} e^{-\eta \ell_{t}^{k}} \right) &= \sum_{t=1}^{T} \frac{-1}{\eta} \ln \left(\sum_{k=1}^{K} \frac{e^{-\eta \sum_{s=1}^{t-1} \ell_{s}^{k}}}{\sum_{j=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_{s}^{k}}} e^{-\eta \ell_{t}^{k}} \right) \\ &= \sum_{t=1}^{T} \frac{-1}{\eta} \ln \left(\frac{\sum_{k=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_{s}^{k}}}{\sum_{j=1}^{K} e^{-\eta \sum_{s=1}^{t-1} \ell_{s}^{k}}} \right) \\ &\stackrel{\text{telescopes}}{=} \frac{-1}{\eta} \ln \left(\sum_{k=1}^{K} e^{-\eta \sum_{t=1}^{T} \ell_{t}^{k}} \right) + \frac{\ln K}{\eta} \\ &\leq \min_{k \in [K]} \sum_{t=1}^{T} \ell_{t}^{k} + \frac{\ln K}{\eta}. \end{split}$$

Summary so far

Balancing act: "model complexity" vs "overfitting"

Theorem (OGD)

$$\mathcal{R}_T \ \leq \ rac{D^2}{2\eta} + rac{\eta}{2}G^2T$$

Theorem (EW)

$$\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$$

Summary so far

Balancing act: "model complexity" vs "overfitting"

Theorem (OGD)

$$\mathcal{R}_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T$$

Theorem (EW)

$$\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$$

Generates many follow-up questions:

- What if horizon T is not fixed? Anytime guarantees?
- What if gradient bound G is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity (D) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML'20 tutorial.

Summary so far

Balancing act: "model complexity" vs "overfitting"

Theorem (OGD)

$$\mathcal{R}_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T$$

Theorem (EW)

$$\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$$

Generates many follow-up questions:

- What if horizon T is not fixed? Anytime guarantees?
- What if gradient bound G is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity (D) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML'20 tutorial.

Need refined analyses \Rightarrow Restarts (doubling trick), decreasing η_t (AdaGrad/AdaHedge), learning the learning rate η (MetaGrad),

. . .

Summary so far

Balancing act: "model complexity" vs "overfitting"

Theorem (OGD)

$$\mathcal{R}_T \leq \frac{D^2}{2\eta} + \frac{\eta}{2}G^2T$$

Theorem (EW)

$$\mathcal{R}_T \leq \frac{\ln K}{\eta} + \frac{\eta}{8}T$$

Generates many follow-up questions:

- What if horizon T is not fixed? Anytime guarantees?
- What if gradient bound G is not known a priori?
- Can we have the actual gradient norms?
- What if model complexity (D) is not known? Not uniformly bounded? See Orabona and Cutkosky ICML'20 tutorial.

Need refined analyses \Rightarrow Restarts (doubling trick), decreasing η_t (AdaGrad/AdaHedge), learning the learning rate η (MetaGrad), ...

Active research area!

Two Peeks Beyond the

Basics

Q: What if my domain does not look like either ball or simplex?

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

$$w_{t+1} = \underset{u \in \mathcal{U}}{\operatorname{arg \, min}} \sum_{s=1}^t \langle u,
abla f_s(w_s)
angle + rac{1}{\eta} R(u)$$

Algorithm: Mirror Descent (MD)

$$w_{t+1} = \mathop{\mathsf{arg\,min}}_{oldsymbol{u} \in \mathcal{U}} \langle u,
abla f_t(w_t)
angle + rac{1}{\eta} \mathcal{B}(u \| w_t)$$

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

$$w_{t+1} = \mathop{\mathrm{arg\,min}}_{oldsymbol{u} \in \mathcal{U}} \ \sum_{s=1}^t \langle oldsymbol{u},
abla f_s(oldsymbol{w}_s)
angle + rac{1}{\eta} R(oldsymbol{u})$$

Algorithm: Mirror Descent (MD)

$$w_{t+1} = \mathop{\mathsf{arg\,min}}_{oldsymbol{u} \in \mathcal{U}} \langle u,
abla f_t(w_t)
angle + rac{1}{\eta} \mathcal{B}(u \| w_t)$$

Examples:

	Regularizer <i>R</i>	Bregman Divergence B
OGD	sq. Euclidean norm	sq. Euclidean distance
EW	Shannon entropy	Kullback-Leibler divergence

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

$$w_{t+1} = \underset{u \in \mathcal{U}}{\operatorname{arg\,min}} \sum_{s=1}^t \langle u,
abla f_s(w_s)
angle + rac{1}{\eta} R(u)$$

Algorithm: Mirror Descent (MD)

$$w_{t+1} = \mathop{\mathsf{arg\,min}}_{oldsymbol{u} \in \mathcal{U}} \langle oldsymbol{u},
abla f_t(oldsymbol{w}_t)
angle + rac{1}{\eta} B(oldsymbol{u} \| oldsymbol{w}_t)$$

Examples:

	Regularizer R	Bregman Divergence <i>B</i>
OGD	sq. Euclidean norm	sq. Euclidean distance
EW	Shannon entropy	Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, ... Connections to continuous exponential weights [van der Hoeven et al., 2018].

FTRL/MD "sneak peak" performance

Algorithm: Follow the Regularised Leader (FTRL)

$$w_{t+1} = \underset{u \in \mathcal{U}}{\operatorname{arg \, min}} \sum_{s=1}^{t} \langle u, \nabla f_s(w_s) \rangle + \frac{1}{\eta} R(u)$$

Algorithm: Mirror Descent

$$w_{t+1} = \mathop{rg \min}_{oldsymbol{u} \in \mathcal{U}} \ \langle u,
abla f_t(w_t)
angle + rac{1}{\eta} B(u \| w_t)$$

FTRL/MD "sneak peak" performance

Algorithm: Follow the Regularised Leader (FTRL)

$$w_{t+1} = \mathop{\mathrm{arg\,min}}_{oldsymbol{u} \in \mathcal{U}} \ \sum_{s=1}^t \langle u,
abla f_s(w_s)
angle + rac{1}{\eta} R(u)$$

Algorithm: Mirror Descent

$$w_{t+1} = \mathop{\mathsf{arg\,min}}_{oldsymbol{u} \in \mathcal{U}} \langle u,
abla f_t(w_t)
angle + rac{1}{\eta} \mathcal{B}(u \| w_t)$$

Theorem (AdaFTRL, Orabona and Pál 2015)

Fix a norm $\|\cdot\|$ with associated dual norm $\|\cdot\|_{\star}$. Let $R: \mathcal{U} \to [0, D^2]$ be strongly convex w.r.t. $\|\cdot\|$. AdaFTRL ensures

$$\mathcal{R}_T \leq 2D\sqrt{\sum_{t=1}^T}\|\nabla f_t(w_t)\|_{\star}^2 + 2 \cdot loss \ range.$$

Quadratic Losses

So far we used convexity to "linearise"

$$f_t(u) \geq f_t(w_t) + \langle u - w_t, \nabla f_t(w_t) \rangle,$$

and our methods essentially operated on linear losses. But what if we know there is curvature?

- How to represent/quantify curvature?
- How to efficiently manipulate curvature?
- · How much can we reduce the regret?

Curvature assumptions

Assumption: Quadratic loss lower bound

There is a matrix $M_t \succeq 0$ such that

$$f_t(u) \ \geq \ \underbrace{f_t(w_t) + \langle u - w_t,
abla f_t(w_t)
angle + rac{1}{2}(u - w_t)^\intercal M_t(u - w_t)}_{=:q_t(u)}$$

for each $u \in \mathcal{U}$.

Curvature assumptions

Assumption: Quadratic loss lower bound

There is a matrix $M_t \succeq 0$ such that

$$f_t(u) \ \geq \ \underbrace{f_t(w_t) + \langle u - w_t,
abla f_t(w_t)
angle + rac{1}{2}(u - w_t)^\intercal M_t(u - w_t)}_{=:q_t(u)}$$

for each $u \in \mathcal{U}$.

Two main classes of instances

- squared Euclidean distance: $f_t(u)=\frac{1}{2}\|u-x_t\|^2$ satisfies the assumption with $M_t=I$. More generally, strongly convex functions have $M_t\propto I$.
- linear regression: $f_t(u) = (y_t \langle u, x_t \rangle)^2$ satisfies the assumption with $M_t = x_t x_t^\intercal$. More generally, exp-concave functions have $M_t \propto \nabla_t f_t(w_t) \nabla_t f_t(w_t)^\intercal$.

ONS Algorithm

Algorithm: Online Newton Step (FTRL variant)

$$w_{t+1} = \mathop{\operatorname{arg\,min}}_{u \in \mathcal{U}} \ \sum_{s=1}^t q_s(u) + rac{1}{2} {\left\lVert u
ight
Vert}^2$$

Computing the iterate w_{t+1} amounts to minimising a convex quadratic. Often (depending on \mathcal{U}) closed-form solution or 1d line search.

- For $M_t \propto I$, takes O(d) per round.
- For rank-one M_t , can do update in $O(d^2)$ per round.
- In both cases, need to take care of projection onto \mathcal{U} .

ONS Performance

Algorithm: Online Newton Step (FTRL version)

$$w_{t+1} = \mathop{\operatorname{arg\,min}}_{u \in \mathcal{U}} \ \sum_{s=1}^t q_s(u) + rac{1}{2} {\left\lVert u
ight
Vert}^2$$

Theorem (ONS strcvx bd, Hazan et al. 2006)

For the strongly convex case $M_{
m t} \propto I$, ONS guarantees

$$\mathcal{R}_T = O(\ln T)$$

Algorithm reduces to OGD with specific decreasing step-size η_t

Theorem (ONS expccv bd, Hazan et al. 2006)

For the exp-concave case $M_t \propto g_t g_t^\intercal$, ONS guarantees

$$\mathcal{R}_T = O(d \ln T)$$

ONS Discussion

- Convex quadratics closed under taking sums. Run-time independent of *T*.
- Curvature gives huge reduction in regret: \sqrt{T} to $\ln T$.
- Matrix sketching techniques allow trading off run-time $O(d^2)$ vs O(d) with regret $O(\ln T)$ vs $O(\sqrt{T})$ [Luo et al., 2016].

Applications

Application 1: Offline Optimisation

Problem

Given gradient access to a convex f, find a near-optimal point.

Application 1: Offline Optimisation

Problem

Given gradient access to a convex f, find a near-optimal point.

Idea: run OGD on $f_t = f$ for T rounds. Regret bound gives

$$\sum_{t=1}^{T} f(w_t) - T \min_{u \in \mathcal{U}} f(u) \leq GD\sqrt{T}$$

We may divide by T and apply convexity to find

$$f\left(\frac{1}{T}\sum_{t=1}^{T}w_{t}\right)-\min_{oldsymbol{u}\in\mathcal{U}}f(oldsymbol{u})\ \leq\ rac{GD}{\sqrt{T}}$$

Find ϵ -suboptimal point (iterate average) after $T = \frac{G^2D^2}{\epsilon^2}$ rounds.

Application 1: Offline Optimisation

Problem

Given gradient access to a convex f, find a near-optimal point.

Idea: run OGD on $f_t = f$ for T rounds. Regret bound gives

$$\sum_{t=1}^{T} f(w_t) - T \min_{u \in \mathcal{U}} f(u) \leq GD\sqrt{T}$$

We may divide by T and apply convexity to find

$$f\left(rac{1}{T}\sum_{t=1}^{T}w_{t}
ight)-\min_{oldsymbol{u}\in\mathcal{U}}f(oldsymbol{u}) \ \leq \ rac{GD}{\sqrt{T}}$$

Find ϵ -suboptimal point (iterate average) after $T = \frac{G^2D^2}{\epsilon^2}$ rounds.

Why would we optimise this way? For example, what if $f_t \rightarrow f$.

Application 2: Online to Batch

Assumption: stochastic setting

Suppose training set f_1, \ldots, f_T and test point f drawn i.i.d. from unknown \mathbb{P} .

Problem

Learn a point \hat{w}_T from the training set that generalises to \mathbb{P} , i.e. behaves like $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}_f[f(u)]$

Application 2: Online to Batch

Assumption: stochastic setting

Suppose training set f_1, \ldots, f_T and test point f drawn i.i.d. from unknown \mathbb{P} .

Problem

Learn a point \hat{w}_T from the training set that generalises to \mathbb{P} , i.e. behaves like $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}_f[f(u)]$

Idea: use online learning algorithm on training set f_1, \ldots, f_T , to get iterates w_1, \ldots, w_T . Output the average iterate estimator

$$\hat{w}_T = \frac{1}{T} \sum_{t=1}^T w_t.$$

Theorem

An online regret bound $R_T \leq B(T)$ implies

$$\mathbb{E}_{\textit{iid } f_1, \ldots, f_T, f} \left[f\left(\hat{w}_T\right) - f(u^*) \right] \leq \frac{B(T)}{T}$$

Assumption: convex-concave

Fix an objective function

convex in x, concave in y.

Assumption: convex-concave

Fix an objective function

convex in x, concave in y.

The game value is

$$V^* = \min_{x} \max_{y} g(x, y) = \max_{y} \min_{x} g(x, y).$$

An ϵ -saddle point (\bar{x}, \bar{y}) satisfies

$$V^* - \epsilon \le \min_{x} g(x, \bar{y}) \le V^* \le \max_{y} g(\bar{x}, y) \le V^* + \epsilon.$$

Assumption: convex-concave

Fix an objective function

convex in x, concave in y.

The game value is

$$V^* = \min_{x} \max_{y} g(x, y) = \max_{y} \min_{x} g(x, y).$$

An ϵ -saddle point (\bar{x}, \bar{y}) satisfies

$$V^* - \epsilon \le \min_{x} g(x, \bar{y}) \le V^* \le \max_{y} g(\bar{x}, y) \le V^* + \epsilon.$$

Problem

Find an ϵ -saddle point

Assumption: convex-concave

Fix an objective function

convex in x, concave in y.

The game value is

$$V^* = \min_{x} \max_{y} g(x, y) = \max_{y} \min_{x} g(x, y).$$

An ϵ -saddle point (\bar{x}, \bar{y}) satisfies

$$V^* - \epsilon \le \min_{x} g(x, \bar{y}) \le V^* \le \max_{y} g(\bar{x}, y) \le V^* + \epsilon.$$

Problem

Find an ϵ -saddle point

Idea: play regret minimisation algorithms for x and y.

Application 3: Saddle Point Algorithm

Algorithm: approximate saddle point solver

For t = 1, 2, ..., T

- Players play x_t and y_t .
- Players see loss functions $x \mapsto +g(x,y_t)$ and $y \mapsto -g(x_t,y)$.

Output average iterate pair $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{y}_T = \frac{1}{T} \sum_{t=1}^T y_t$

Assume the players have regret (bounds) $\mathcal{R}_{\mathcal{T}}^{x}$ and $\mathcal{R}_{\mathcal{T}}^{y}$, i.e.

$$\sum_{t=1}^{T} +g(x_t, y_t) - \min_{x} \sum_{t=1}^{T} +g(x, y_t) \leq \mathcal{R}_T^x$$

$$\sum_{t=1}^{T} -g(x_t, y_t) - \min_{y} \sum_{t=1}^{T} -g(x_t, y) \leq \mathcal{R}_T^y$$

Theorem (self-play, Freund and Schapire 1999)

 \bar{x}_T and \bar{y}_T form an $\frac{\mathcal{R}_T^x + \mathcal{R}_T^y}{T}$ -saddle point.

Application 3: Saddle Point Analysis

$$\begin{split} V^* &= & \min_{x} \max_{y} g(x,y) \\ &\leq & \max_{y} g(\bar{x}_{T},y) \\ &\leq & \max_{y} \frac{1}{T} \sum_{t=1}^{T} g(x_{t},y) \\ &\leq & \frac{1}{T} \sum_{t=1}^{T} g(x_{t},y_{t}) + \frac{\mathcal{R}_{T}^{y}}{T} \\ &\leq & \min_{x} \frac{1}{T} \sum_{t=1}^{T} g(x,y_{t}) + \frac{\mathcal{R}_{T}^{x} + \mathcal{R}_{T}^{y}}{T} \\ &\leq & \min_{x} g(x,\bar{y}_{T}) + \frac{\mathcal{R}_{T}^{x} + \mathcal{R}_{T}^{y}}{T} \\ &\leq & \min_{x} \max_{y} g(x,y) + \frac{\mathcal{R}_{T}^{x} + \mathcal{R}_{T}^{y}}{T} \\ &= & V^* + \frac{\mathcal{R}_{T}^{x} + \mathcal{R}_{T}^{y}}{T} \end{split}$$

Conclusion and Extensions

Conclusion

- Online Learning a powerful and versatile tool
- Environment-as-black-box. Adversarial.
- Foundation for optimisation, statistical learning, games, ...

Conclusion

- Online Learning a powerful and versatile tool
- Environment-as-black-box. Adversarial.
- Foundation for optimisation, statistical learning, games, ...

Some (of many) cool things we left out:

- First-order (small loss) and second-order (small variance) bounds
- Adaptivity to friendly stochastic environments (best of both worlds, interpolation)
- Optimism (predicting the upcoming gradient)
- Non-stationarity (tracking, adaptive/dynamic regret, path length)
- Beyond convexity (star-convex, geometrically convex, ...)
- Supervised Learning and (stochastic) complexities (VC, Littlestone, Rademacher, ...)

Thanks!

References

- John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization.

 Journal of Machine Learning Research, 12:2121–2159, 2011.
- Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *J. Comput. Syst. Sci.*, 55(1):119–139, August 1997.
- Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. *Games and Economic Behavior*, 29(1-2):79–103, 1999.
- Elad Hazan, Adam Kalai, Satyen Kale, and Amit Agarwal. Logarithmic regret algorithms for online convex optimization. In *Learning Theory*, pages 499–513, 2006.

- Haipeng Luo, Alekh Agarwal, Nicolò Cesa-Bianchi, and John Langford. Efficient second order online learning by sketching. In *Advances in Neural Information Processing Systems 29*, pages 902–910. 2016.
- Francesco Orabona and Dávid Pál. Scale-free algorithms for online linear optimization. In *Algorithmic Learning Theory*, pages 287–301, 2015.
- Dirk van der Hoeven, Tim van Erven, and Wojciech Kotłowski. The many faces of exponential weights in online learning. volume 75 of *Proceedings of Machine Learning Research*, pages 2067–2092, 06–09 Jul 2018.
- Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of the Twentieth International Conference on International Conference on Machine Learning*, ICML'03, page 928–935, 2003.

Simons Tutorial: Online Learning and Bandits Part II

Wouter Koolen and **Alan Malek** August 31st, 2020

What is a Bandit?

The Basic Bandit Game

Protocol: A Bandit Game

Given: game length T, action space A

For t = 1, 2, ..., T,

- The learner picks action $A_t \in \mathcal{A}$
- The adversary simultaneously picks reward $r_t \in \mathcal{A}
 ightarrow [0,1]$
- The learner observes and receives $r_t(A_t)$
- The learner does not observe $r_t(a)$ for $a \neq A_t$

The goal: control the regret (a random variable)

$$\mathcal{R}_{T} = \max_{\mathbf{a} \in \mathcal{A}} \sum_{t=1}^{T} r_{t}(\mathbf{a}) - \sum_{t=1}^{T} r_{t}(A_{t})$$
Best action in hindsight (1)

Bandits as a super simple MDP

- $S = \{\text{the_state}\}$, $P(\text{the_state}|\text{the_state}, a) = 1$
- Why should we care about this in RL?
 - Creates a tension between
 - · Exploration (learning about the loss of actions)
 - Exploitation (playing actions that will have low regret)
 - Exploration/Exploitation is absent in full-information, present in RL
 - · Model is simple enough to allow for comprehensive theory
 - · Easily incorporates adversarial data
 - · Useful algorithm design principles

The Regret

$$\mathcal{R}_{T} = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t}(a) - \sum_{t=1}^{T} r_{t}(A_{t})$$
Best action in hindsight

- $\mathcal{R}_{\mathcal{T}}$ is a random variable we do not observe
- Different objectives, from easiest to hardest
 - Pseudo-regret $\overline{\mathcal{R}_T} = \max_{a \in \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^T r_t(a) \right] \mathbb{E} \left[\sum_{t=1}^T r_t(A_t) \right]$
 - Expected regret $\mathbb{E}[\mathcal{R}_T] = \mathbb{E}\left[\max_{a \in \mathcal{A}} \sum_{t=1}^T r_t(a) \sum_{t=1}^T r_t(A_t)\right]$
 - · High probability bounds on the realized regret
- We always have $\overline{\mathcal{R}_T} \leq \mathbb{E}[\mathcal{R}_T]$
- If the adversary is *reactive*, then the distribution of r_t can be a function of A_1, \ldots, A_{t-1}
- Otherwise, the adversary is *oblivious* and $\overline{\mathcal{R}_T} = \mathbb{E}[\mathcal{R}_T]$

Our focus

- Introduce most popular bandit problems
 - Adversarial Bandits
 - Stochastic Bandits
 - · Pure Exploration Bandits
 - · Contextual Bandits (time permitting)
- · Concentrate on useful algorithm design principles
 - Exponential weights (still useful)
 - · Optimism in the face of Uncertainty
 - Probability matching (i.e. Thompson sampling)
 - · Action-Elimination

Other Settings that haven been considered

- Data models for r_t
 - chosen by an adversary
 - sampled i.i.d.
 - stochastic with adversarial perturbations...
- Action spaces
 - · Finite number of arms
 - A vector space (r_t are functions)
 - Combinatorial (e.g. subsets, paths on a graph)
- Objectives
 - Pseudo-regret (the expectation over the learner's randomness)
 - Realized regret (with high probability)
 - · Best-arm identification a.k.a. pure exploration
- Side information
 - · Linear rewards
 - · Competing with a policy class
-

Adversarial Bandits

Adversarial Protocol

Protocol: Finite-Arm Adversarial Bandit Protocol

Given: game length T, number of arms K

For
$$t = 1, 2, ..., T$$
,

- The learner picks action $I_t \in \{1, \dots, K\}$
- The adversary simultaneously picks losses $\ell_t \in [0,1]^K$
- The learner observes and receives $\ell_t(I_t)$
 - The results are easier to state using losses instead of rewards
 - Randomization of It is essential
 - · We are familiar with adversarial data from the first half
 - The simple idea of estimating ℓ_t from $\ell_t(I_t)$ and then applying a full-information algorithm works very well

Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]

Given: number of arms K, learning rate $\eta > 0$, length TInitialize $p_0(i) = 1/K$, $\hat{L}_0(i) = 0$ for all $i \in [K]$

For t = 1, 2, ..., T:

- Sample $I_t \sim p_t$ and observe $\ell_t(I_t)$
- Estimate $\hat{\ell}_t(i) = \frac{\ell_t(l_t)}{p_t(l_t)} \mathbb{1}_{\{l_t=i\}}$ and $\hat{L}_t = \hat{\ell}_t + \hat{L}_{t-1}$
- Calculate $W_t = \sum_j e^{-\eta \hat{\mathcal{L}}_t(j)}$ and $p_t(i) = \frac{1}{W_t} e^{-\eta \hat{\mathcal{L}}_t(i)}$
 - Exp3 = Exponential Weights for Exploration and Exploitation
 - $\hat{\ell}_t$ is the importance-weighted estimator of ℓ_t
 - $\hat{\ell}_t$ is unbiased:

$$\mathbb{E}_{l_t \sim p_t}[\hat{\ell}_t(I_t)] = \mathbb{E}\left[\frac{\ell_t(I_t)}{p_t(I_t)}\mathbb{1}_{\{I_t=i\}}\right] = \sum_i p_t(i)\frac{\ell_t(I_t)}{p_t(I_t)}\mathbb{1}_{\{I_t=i\}} = \ell_t(i).$$

• Exp3 runs exponential weights on $\hat{\ell}_t$

Exp3: Analysis

- Following the EW analysis, W_t is a potential function
- For any i^* , $e^{-\eta \hat{L}_T(i^*)} \leq \sum_j e^{-\eta \hat{L}_T(j)} = W_T = W_0 \prod_{t=1}^T \frac{W_t}{W_{t-1}}$.

$$\begin{split} \frac{W_t}{W_{t-1}} &= \frac{\sum_{j} e^{-\eta \hat{L}_{t-1}(j)} e^{-\eta \hat{\ell}_{t}(j)}}{\sum_{j} e^{-\eta \hat{L}_{t-1}(j)}} = \sum_{j} p_{t-1}(j) e^{-\eta \hat{\ell}_{t}(j)} \\ &\leq \underbrace{\sum_{j} p_{t-1}(j) \left(1 - \eta \hat{\ell}_{t}(j) + \frac{\eta^2}{2} \hat{\ell}_{t}(j)^2\right)}_{\text{since } e^x \leq 1 + x + \frac{1}{2}x^2 \text{ for } x \leq 0} \\ &= 1 - \eta \sum_{j} p_{t}(j) \hat{\ell}_{t}(j) + \frac{\eta^2}{2} \sum_{j} p_{t}(j) \hat{\ell}_{t}(l)^2 \\ &\leq \underbrace{e^{-\eta \sum_{j} p_{t}(j) \hat{\ell}_{t}(j) + \frac{\eta^2}{2} \sum_{j} p_{t}(j) \hat{\ell}_{t}(j)^2}_{\text{since } 1 + x \leq e^x} \end{split}$$

Exp3: Analysis

· Computing the telescope,

$$e^{-\eta \hat{L}_{T}(j^{*})} \leq W_{0} \prod_{t=1}^{T} \frac{W_{t}}{W_{t-1}} \leq K \prod_{t=1}^{T} e^{-\eta \sum_{j} p_{t}(j) \hat{\ell}_{t}(j) + \frac{\eta^{2}}{2} \sum_{j} p_{t}(j) \hat{\ell}_{t}(j)^{2}}$$

• We rearrange, divide by η , and take the log:

$$\begin{split} \sum_{t=1}^{T} \sum_{j} \rho_{t}(j) \hat{\ell}_{t}(j) - \hat{L}_{T}(i^{*}) &\leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{j} \rho_{t}(j) \hat{\ell}_{t}(j)^{2} \\ &= \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{j} \rho_{t}(j) \frac{\ell_{t}(j)^{2}}{\rho_{t}(j)^{2}} \mathbb{1}_{\{l_{t}=j\}} \\ &\leq \frac{\log(K)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{j} \frac{\mathbb{1}_{\{l_{t}=j\}}}{\rho_{t}(I_{t})}. \end{split}$$

Exp3: Analysis

Take the expectation

$$egin{aligned} \overline{\mathcal{R}}_{\mathcal{T}} &\leq \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}} \sum_{j} p_{t}(j) \hat{\ell}_{t}(j) - \hat{\mathcal{L}}_{\mathcal{T}}(i^{*})
ight] \ &\leq rac{1}{\eta} \log(\mathcal{K}) + rac{\eta}{2} \sum_{t=1}^{\mathcal{T}} \mathbb{E}\left[\sum_{t=1}^{\mathcal{T}} \sum_{j} rac{\mathbb{1}_{\{I_{t}=j\}}}{p_{t}(I_{t})}
ight] \ &\leq rac{1}{\eta} \log(\mathcal{K}) + rac{\eta}{2} \mathcal{T} \mathcal{K}. \end{aligned}$$

Theorem (Exp3 upper bound [Auer et al., 2002b])

With
$$\eta = \sqrt{\frac{2 \log(T)}{TK}}$$
, Exp3 has $\overline{\mathcal{R}}_T \leq \sqrt{2TK \log(K)}$.

Only get pseudo-Regret bounds because the i^* in the proof was fixed, not a function of I_1, \ldots, I_T .

Lower Bounds

Theorem (Adversarial Bandits lower bound [Auer et al., 2002b])

Any adversarial bandit algorithm must have

$$\overline{\mathcal{R}}_T = \Omega(\sqrt{TK})$$

- Exp3 upper bound: $\overline{\mathcal{R}}_T \leq \sqrt{2TK \log(K)}$
- First matching upper bound achieved by INF [Audibert and Bubeck, 2009] (which is Mirror Descent)

Upgrades

- High Probability bounds: requires a lower-variance estimate of $\hat{\ell}_t$ or an algorithm that keeps $p_t(i)$ away from zero
 - Exp3.P [Auer et al., 2002b] uses $\hat{\ell}_t(i) = \frac{\mathbbm{1}_{\{l_t=i\}}\ell_t(l_t)-\beta}{p_t(l_t)}$
 - Exp3-IX [Neu, 2015] uses $\hat{\ell}_t(i) = \frac{\mathbb{1}_{\{l_t=i\}}\ell_t(l_t)}{\rho_t(l_t)+\gamma}$
- Experts with bandits; each arm is an expert that recommends actions and you compete with the best expert (Exp4 algorithm) [Auer et al., 2002b]
- Competing with strategies that can switch [Auer, 2002]
- Feedback determined by a graph [Mannor and Shamir, 2011]
- Partial Monitoring [Bartók et al., 2014]
- · Combinatorial action spaces...

Stochastic Bandits

Protocol

Protocol: Stochastic Bandits Protocol

Given: game length T, number of arms KAssume unknown reward distributions ν_1, \ldots, ν_K

For t = 1, 2, ..., T,

- The learner picks action $I_t \in \{1, \dots, K\}$
- The learner observes and receives reward $X_t \sim
 u_{l_t}$
 - Stochastic bandits is an old problem [Thompson, 1933]
 - We will use the following notation
 - Reward of arm i is sampled from ν_i with $\mu_i := \mathbb{E}_{\mathsf{X} \sim \nu_i}[\mathsf{X}]$
 - $i^* = \arg \max_i \mu_i$ is the best arm
 - Gaps $\Delta_i := \mu^* \mu_i \geq 0$,
 - Number of pulls $N_{i,t} := \sum_{s=1}^{t} \mathbb{1}_{\{l_s=i\}}$
 - Empirical mean $\hat{\mu}_{i,t} := \frac{\sum_{\mathsf{s}=1}^t \mathsf{X}_\mathsf{s} \mathbb{1}_{\{l_\mathsf{s}=i\}}}{\mathsf{N}_{i,t}}$

Protocol

Protocol: Stochastic Bandits Protocol

Given: game length T, number of arms KAssume unknown reward distributions ν_1, \ldots, ν_K

For t = 1, 2, ..., T,

- The learner picks action $I_t \in \{1, \dots, K\}$
- The learner observes and receives reward $X_t \sim \nu_{l_t}$
 - We still want to minimize the expected regret, which has the useful decomposition

$$\mathbb{E}[\mathcal{R}_T] = T\mu_{i^*} - \sum_{t=1}^T \mathbb{E}[X_t] = \sum_i \Delta_i \mathbb{E}[N_{i,T}]$$

Assumption: 1-sub-Gaussian reward distributions

For all stochastic bandit problems, we will assume that all arms are 1-sub-Gaussian, i.e. $\mathbb{E}_{X \sim \mu_i}[e^{\lambda(X-\mu_i)^2-\lambda^2/2}] \leq 1$. This implies

$$P(\hat{\mu}_{i,t} - \mu_i \ge \epsilon) \le e^{-\frac{\epsilon^2 t}{2}}.$$

Warm-up: Explore-Than-Commit

Algorithm: Explore-Than-Commit

Given: Game length T, exploration parameter M

For t = 1, 2, ..., MK:

• Choose $i_t = (t \mod K)$, see $X_t \sim \nu_{i_t}$

Compute empirical means $\hat{\mu}_{i,mK}$

For t = MK + 1, MK + 2, ..., T:

- Pull arm $i = \arg \max_i \hat{\mu}_{i,mK}$
 - · The first strategy you might try
 - A proof idea that we will return to: bound regret by first bounding $\mathbb{E}[N_{i,T}]$.
 - · In this simple algorithm,

$$\mathbb{E}[N_{i,T}] = M + (T - MK)P\left(i = \arg\max_{j} \hat{\mu}_{j,MK}\right)$$

Explore-than-Commit Upper Bound

Using the sub-Gaussian concentration bound,

$$\begin{split} P\left(i = \arg\max_{j} \hat{\mu}_{j,MK}\right) &\leq P\left(\hat{\mu}_{i,MK} \geq \hat{\mu}_{i^*,MK}\right) \\ &= P\left(\left(\hat{\mu}_{i,MK} - \mu_{i}\right) \geq \left(\hat{\mu}_{i^*,MK} - \mu_{i^*}\right) + \Delta_{i}\right) \\ &\leq e^{-\frac{M\Delta_{i}^{2}}{4}} \text{ (the difference is } \sqrt{2/M}\text{-sub-Gaussian)} \end{split}$$

Theorem (Explore-than-Commit upper bound)

$$\mathbb{E}[\mathcal{R}_{\mathcal{T}}] = \sum_{i} \Delta_{i} \mathbb{E}[N_{i,\mathcal{T}}] \leq \sum_{i=1}^{K} \Delta_{i} \left(M + (T - MK)e^{-\frac{M\Delta_{i}^{2}}{4}} \right)$$

- If we know Δ , then $m=\frac{4}{\Delta_1^2}\log\frac{T\Delta_1^2}{4}$, results in $\mathbb{E}[\mathcal{R}_T] \leq \sum_{i=1}^K \frac{4}{\Delta_1}\log\frac{T\Delta_1^2}{4} + T\frac{4}{T\Delta_1^2} = O\left(\frac{K\log(T)}{\Delta_1}\right)$
- But we don't know Δ ...can we be adaptive?

Algorithm Design Principle: OFU

- OFU: Optimism in the Face of Uncertainty
- We establish some confidence set for the problem instance (e.g. means) to within some confidence set
- We then assume the most favorable instance in the confidence set and act greedily

Algorithm: UCB1 [Auer et al., 2002a]

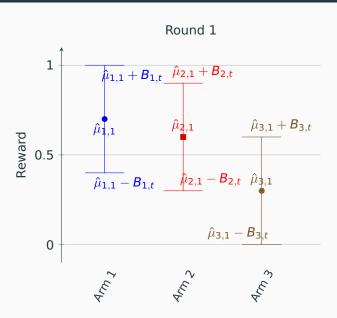
Given: Game length T

Initialize: play every arm once

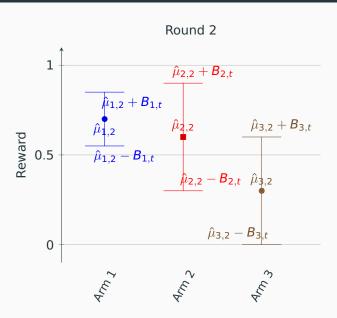
For t = K + 1, 2, ..., T:

- Compute upper confidence bounds $B_{i,t-1} = \sqrt{\frac{6 \log(t)}{N_{i,t-1}}}$
- Choose $I_t = \arg\max_i \hat{\mu}_{i,t-1} + B_{i,t-1}$, observe $X_t \sim \nu_{I_t}$
- Update $N_{i,t}=N_{i,t-1}+\mathbb{1}_{\{l_t=i\}}$ and $\hat{\mu}_{i,t}=rac{\sum_{s=1}^t\mathbb{1}_{\{l_s=i\}}X_s}{N_{i,t}}$

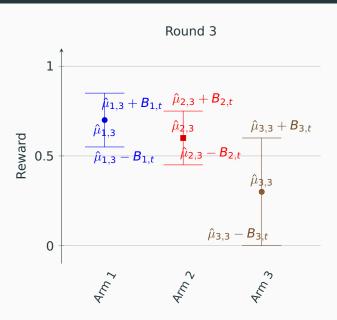
UCB Illustration



UCB Illustration



UCB Illustration



UCB: Intuition

- Naturally balances exploration and exploitation: an arm has a high UCB if
 - It has a high $\hat{\mu}_{i,t}$, or
 - $B_{i,t}$ is large because $N_{i,t-1}$ is small
- Optimistic because we pretend the rewards are the plausibly best and then do the greedy thing

UCB: Analysis

- Define $M_i = \left\lceil \frac{12 \log(n)}{\Delta_i^2} \right\rceil$, the number of pulls of arm i such that $B_{i,t} = \sqrt{\frac{6 \log(t)}{N_{i,t}}} \leq \sqrt{\frac{6 \log(n)}{N_{i,t}}} \leq \frac{\Delta_i}{2}$
- The intuition of the proof is
 - 1. Since $\overline{\mathcal{R}_T} = \sum_i \Delta_i \mathbb{E}[N_{i,T}]$, we bound $\mathbb{E}[N_{i,t}]$ first.
 - 2. With high probability, we will never pull arm i more than M_i times, so

$$\mathbb{E}[N_{i,T}] = \mathbb{E}\sum_{t=1}^{T} \mathbb{1}_{\{I_t=i\}} = M_i + \sum_{t=M_i}^{T} \mathbb{E}\mathbb{1}_{\{I_t=i,N_{i,t}>M_i\}}$$
we will bound this

3. If $\{I_t = i, N_{i,t} > M_i\}$ occurs, then the UCB for i^* or for i must be wrong (next slide)

UCB: Analysis

Claim: if $\{I_t = i, N_{i,t} > M_i\}$ occurs, then the UCB for i^* or for i must be wrong.

Suppose that $N_{i,t} > M_i$, $\hat{\mu}_{i,t} + B_{i,t} \ge \mu_i$, and $\hat{\mu}_{i^*,t} + B_{i^*,t} \ge \mu_{i^*}$. Then

$$\hat{\mu}_{i^*,t} + B_{i^*,t} \ge \mu_{i^*} = \mu_i + \Delta_i \ge \mu_i + \underbrace{2B_{i,t}}_{\text{by choice of }B_{i,t}} \ge \hat{\mu}_{i,t} + B_{i,t},$$

so the algorithm will not choose $I_t = i$. Hence, one (or both) of upper bounds must be wrong.

Hence, we must bound $P(\hat{\mu}_{i,t} + B_{i,t} \leq \mu_i)$.

UCB: Analysis

Using our sub-Gaussian concentration inequality,

$$P(\hat{\mu}_{i,t} + B_{i,t} \le \mu_i) \le P\left(\exists s \le t : \hat{\mu}_{i,s} - \mu_i \le \sqrt{\frac{6\log(t)}{s}}\right)$$

$$\le \sum_{s=1}^t P\left(\hat{\mu}_{i,s} - \mu_i \le \sqrt{\frac{6\log(t)}{s}}\right)$$

$$\le \sum_{s=1}^t \exp\left\{-\frac{3\log(t)}{s}\right\} \le \sum_{s=1}^t t^{-3} \le t^{-2}.$$

The same inequality holds for i^* , so

$$\overline{\mathcal{R}_T} = \sum_i \Delta_i \mathbb{E}[N_{i,T}] \leq \sum_i \Delta_i \left(\frac{12 \log(n)}{\Delta_i^2} + 2 \sum_{t=M_i+1}^T t^{-2} \right).$$

UCB: Analysis Step 2

Theorem (UCB upper bound [Auer, 2002])

The UCB1 algorithm on 1-sub-Gaussian data has

$$\overline{\mathcal{R}_T} \leq \sum_i \frac{12 \log(n)}{\Delta_j} + o(1).$$

UCB: Analysis Step 2

Theorem (UCB upper bound [Auer, 2002])

The UCB1 algorithm on 1-sub-Gaussian data has

$$\overline{\mathcal{R}_{\mathcal{T}}} \leq \sum_{i} \frac{12 \log(n)}{\Delta_{j}} + o(1).$$

Theorem (Lower Bound [Lai and Robbins, 1985])

Suppose we have a parametric family P_{θ} , for some $\theta_1, \dots, \theta_k$

$$\liminf_{T \to \infty} \frac{\overline{R_T}}{\log(T)} \ge \sum_{i \ne i^*} \frac{\Delta_i}{\mathit{KL}(P_{\theta_i}, P_{\theta_{i^*}})} \approx O\left(\sum_{i \ne i^*} \frac{1}{\Delta_i}\right)$$

E.g. if P_{θ} is Bernoulli, then $\frac{(\theta_i - \theta_{i^*})^2}{\theta_{i^*}(1 - \theta_{i^*})} \ge KL(P_{\theta_i}, P_{\theta_{i^*}}) \ge 2(\theta_i - \theta_{i^*})^2$.

Lower Bound Reasoning

- Fix a strategy and consider two problem instances:
 - 1. $\nu_1, \nu_2, \dots, \nu_k$; with P as the joint distribution over $(I_t, r_{i,t})$
 - 2. $\nu_1, \nu'_2, \dots, \nu_k$; with P' as the joint distribution over $(I_t, r_{i,t})$
 - 3. The optimal arm is different: $\mu'_2 \geq \mu_1 \geq \mu_2 \geq \mu_3 \geq \dots$
 - 4. The data from P and P' will look very similar
- An algorithm that does well on P must not pull arm 2 too many times; hence, it will not do well on P'
- "Similar" is quantified by a change-of-measure identity; e.g. $P'(A) = e^{-\widehat{kI}_{N_2,T}}P(A)$, where $\widehat{kI}_t = \sum_{s=1}^t \log \frac{d\nu_2}{d\nu_s'}(X_{2,s})$
- Hence, an algorithm cannot tell if it is P or P' and must get high regret under P', mistakenly believing it is playing in P

Algorithm design principle: probability matching

- We put a π over μ_i and a likelihood $\nu_i = P(\cdot|\mu_i)$ over arm i
- We choose $P(I_t = i) = P(\mu_i = \mu_{i^*} | history)$
- We usually pick conjugate models (e.g. $\mu_i \sim N(0,1)$, $X_t \sim N(\mu_i,1)$)

Algorithm: Thompson Sampling

Given: game length T, prior $\pi(\mu)$, likelihoods $p(\cdot|\mu)$ Initialize posteriors $p_{i,0}(\mu) = \pi(\mu)$

For
$$t = 1, 2, ..., T$$
:

- Draw $\theta_{i,t} \sim p_{i,t-1}$ for all i
- Choose $I_t = \arg \max_i \theta_{i,t}$
- Receive and observe $X_t \sim \nu_{I_t}$
- Update the posterior $p_{l_{\tau},t}(\mu) = p(X_t|\mu)p_{l_t,t-1}(\mu)$
 - We put a π over μ_i and a likelihood $\nu_i = P(\cdot|\mu_i)$ over arm i
 - We choose $P(I_t = i) = P(\mu_i = \mu_{i*} | history)$
 - We usually pick conjugate models (e.g. $\mu_i \sim N(0,1)$,

Thompson Sampling: Overview

- Not Bayesian; uses Bayesian techniques, but the guarantees are frequentist
- Arms with small $N_{i,t}$ implies a wide posterior, hence a good probability of being selected
- · Generally performs empirically better that UCB
- Arms with small $N_{i,t}$ implies a wide posterior, hence a good probability of being selected
- Analysis is difficult

Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])

For binary rewards, Gamma-Beta Thompson sampling has $\mathbb{E}[R_T] \leq (1+\epsilon) \sum_{j \neq j^*} \Delta_j \frac{\log(T)}{KL(\mu_i, \mu_{i*})} + O\left(\frac{N}{\epsilon^2}\right)$.

- The proof is much more technical that UCB's
- We cannot rely on the upper bounds being correct w.h.p.
- For some to-be-tuned $\mu_i \le x_i \le y_i \le \mu_{i^*}$, we have

$$\mathbb{E}[N_{i,T}] \leq \sum_{t=1}^{T} P(I_t = i)$$

$$\leq \sum_{t=1}^{T} P(I_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \geq y_i) \qquad (O\left(\frac{\log(T)}{kl(x_j, y_j)}\right))$$

$$+ \sum_{t=1}^{T} P(I_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i) \quad \text{(the tricky case)}$$

 $+\sum_{t=1}^{T}P(I_{t}=i,\hat{\mu}_{i,t-1}\geq x_{i})$ (Small by concentration)

Thompson Sampling: Proof Outline

- The tricky case is $\sum_{t=1}^{T} P(I_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i)$
- This happens when we have enough samples of i but not many of i*
- A key lemma argues that, on μ̂_{i,t-1} ≤ x_i, θ_{i,t} ≤ y_i, the
 probability of picking i is a constant less than of picking i*:

$$\begin{split} &\sum_{t=1}^{T} P(I_t = i, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i) \\ &\leq \sum_{t=1}^{T} \underbrace{\frac{P(\theta_{i^*,t} \leq y_i)}{P(\theta_{i^*,t} > y_j)}}_{\text{exponentially small}} P(I_t = i^*, \hat{\mu}_{i,t-1} \leq x_i, \theta_{i,t} \leq y_i) = O(1) \end{split}$$

• Hence, we will quickly get enough samples of i^*

Best of Both Worlds

- The stochastic and adversarial algorithms are quite different
- A natural question: is there an algorithm that
 - gets $\mathcal{R}_T = O(\sqrt{TK})$ regret for adversarial
 - gets $\mathcal{R}_t = O(\sum_i \log(T)/\Delta_i)$ regret for stochastic
 - · without knowing the setting?
- Bubeck and Slivkins [2012] propose an algorithm that assumes stochastic but falls back to UCB once adversarial data is detected
- Zimmert and Seldin [2019] show that (for pseudo-regret), it is possible
 - Their algorithm: online mirror descent with $\frac{1}{2}$ -Tsallis entropy
 - $\Psi(w) = -\sum_{i} 4(\sqrt{w_i} \frac{1}{2}w_i)$

Pure Exploration

A new problem

- What if we only wanted to identify the best arm i* without caring about loss along the way?
- Intuitively, we would explore more; we are happy to accrue less reward if we get more useful samples.
- More similar to hypothesis testing; useful for selecting treatments
- Known as "Best Arm Identification" or "Pure Exploration"

Two settings

Protocol: Best-arm identification protocol

Given:number of arms K

For t = 1, 2, ...,

- The learner picks arm $I_t \in \{1, \dots, K\}$
- The learner observes $X_t \sim \nu_{l_t}$
- The learner decides whether to stop

The learner returns arm A

Two settings:

	fixed-confidence	fixed-budget
Input	$\delta >$ 0, $\epsilon >$ 0	T
Goal	arm A is (ϵ, δ) -PAC	maximize $P(A = i^*)$
Stopping	once learner is confident	after T rounds

Arm A is (ϵ, δ) -PAC if $P(\mu_A \ge \mu_{i^*} - \epsilon) \ge 1 - \delta$.

- Standard stochastic bandit algorithms under explore (they fail to meet lower bounds on this problem)
- Many can be adapted
- LUCB [?]

• Top-Two Thompson Samping [?]

• Instead, we will describe a new algorithm design principle

Algorithm Design Principle: Action Elimination

Algorithm: Successive Elimination

Given: confidence $\delta > 0$

Initialize plausibly-best set $\textit{S} = \{1, \dots, \textit{K}\}$

For t = 1, 2, ...:

- Pull all arms in S and update $\hat{\mu}_{i,t}$
- Calculate $B_t = \sqrt{t^{-1} \log(nt^2/\delta)}$
- Remove i from S if $\max_{j \in S} \hat{\mu}_{j,t} B_t \ge \hat{\mu}_{i,t} + B_t$ highest μ_i could be
- If |S| = 1, stop and return A = S.
 - S is a list of plausibly-best arms
 - Each epoch, all arms that cannot be the best (if the bounds hold) are removed

Successive Elimination Analysis

• Define the "bad event" $\mathcal{E} = \bigcup_{i,t} \{ |\hat{\mu}_{i,t} - \mu_i| \leq B_t(\delta) \}$: we have

$$\begin{split} P(\mathcal{E}) &\leq \sum_{i,t} P\left(|\hat{\mu}_{i,t} - \mu_i| \leq \sqrt{t^{-1}\log(Kt^2/\delta)}\right) \leq \sum_{i,t} 2e^{-\frac{1}{2}\log\left(\frac{Kt^2}{\delta}\right)} \\ &\leq \sum_{i,t} \frac{2e^{-2}\delta}{Kt^2} = \frac{2e^{-2}\pi^2}{6}\delta \leq \delta \end{split}$$

- (Correctness) If $\mathcal E$ does not happen,
 - $|\hat{\mu}_{i^*} \mu_{i^*}| \le B_t$ and $|\mu_j \hat{\mu}_j| \le B_t$ for all j. Thus, $\hat{\mu}_i \hat{\mu}_{i^*} \le (\mu_{i^*} \hat{\mu}_{i^*}) + (\mu_{i^*} \mu_i) + (-\mu_i \hat{\mu}_{i^*}) \le 2B_t$
 - *i* is removed if $\max_{i \in S} \hat{\mu}_{i,t} \hat{\mu}_{i,t} \ge 2B_t \Rightarrow i^*$ is never removed
 - $\lim_{t\to\infty} B_t(\delta) \to 0$: every arm will eventually be removed
 - Hence, Successive Elimination is $(0, \delta)$ -PAC
- (Sample Complexity): arm i will be eliminated once $\Delta_i \leq 2B_t$
 - We can verify that $N_i = O\left(\Delta_i^{-2} \log(K/\delta \Delta_i)\right)$ is sufficient
 - Total sample complexity of $\sum_i \Delta_i^{-2} \log(K/\delta \Delta_i)$
- Can convert to a (ϵ, δ) -PAC algorithm by stopping early

Linear Stochastic Bandits

Bonus: Linear Contextual Bandits

Protocol: Contextual Linear Bandit Protocol

Given: game length T, number of arms K

For t = 1, 2, ..., T,

- The learner sees one context per arm $c_{1,t},\ldots,c_{K,t}$
- The learner picks action $I_t \in \{1, \dots, K\}$
- The learner observes and receives reward $X_t = \langle c_{I_t,t}, heta^*
 angle + \xi_t$

Regret is defined w.r.t. an agent that knows the true θ :

$$\mathcal{R}_T = \sum_{t=1}^T \max_i X_{i,t}^\mathsf{T} \theta^* - \sum_{t=1}^T X_t$$

Algorithm Design Principle: Optimism

Algorithm: OFUL [Abbasi-Yadkori et al., 2011]

Initialize $\hat{\theta}_0 = 0$, $B_0 = \mathbb{R}^d$ For $t = 1, 2, \dots, T$:

- Receive contexts $c_{1,t}, \ldots, c_{K,t}$
- Choose $(I_t, \tilde{\theta}_t) = \arg\max_{i \in \{1, ..., K\}, \theta \in B_{t-1}} \theta^{\intercal} c_{i,t}$ (optimism)
- Observe $X_t = c_{I_t,t}^{\mathsf{T}} \theta^* + \xi_t$
- Calculate $V_t = \sum_{s=1}^t c_s c_s^\intercal + \lambda I$ and $r_t = \sqrt{\log \frac{\det(V_t)}{\delta^2 \lambda^d}} + \sqrt{\lambda} \|\theta^*\|$
- Calculate $\hat{ heta}_t = V_t^{-1} \left(\sum_{s=1}^t c_s X_s \right)$ (ridge)
- Update $B_t = \{\theta : (\theta \hat{\theta}_t)^\intercal V_t (\theta \hat{\theta}_t) \le r_t\}$
 - If ξ_t is 1-sub-Gaussian, B_t is a confidence sequence with $P(\forall t>0:\theta^*\in B_t)\geq 1-\delta$ (more examples in [de la Peña et al., 2009, Howard et al., 2020])

Analysis

- Regret decomposes over rounds:
- Recall that $(I_t, \tilde{\theta}_t) = \arg\max_{i \in \{1, ..., K\}, \theta \in B_{t-1}} \theta^\intercal c_{i,t}$

$$\begin{split} \mathcal{R}_{t} - \mathcal{R}_{t-1} &= c_{l_{t}}^{\mathsf{T}} \theta^{*} - c_{l_{t}}^{\mathsf{T}} \theta^{*} \\ &\leq c_{l_{t}}^{\mathsf{T}} \tilde{\theta}_{t} - c_{l_{t}}^{\mathsf{T}} \theta^{*} \\ &\leq c_{l_{t}}^{\mathsf{T}} \left(\tilde{\theta}_{t} - \hat{\theta}_{t-1} \right) + c_{l_{t}}^{\mathsf{T}} \left(\hat{\theta}_{t-1} - \theta^{*} \right) \\ &\leq \|c_{l_{t}}\|_{V_{t}} \underbrace{\left\| \tilde{\theta}_{t} - \hat{\theta}_{t-1} \right\|_{V_{t}}}_{\leq r_{t}} + \|c_{l_{t}}\|_{V_{t}} \underbrace{\left\| \hat{\theta}_{t-1} - \theta^{*} \right\|_{V_{t}}}_{\leq r_{t}} \end{split}$$

• After some algebra, we can show, with probability $\geq 1-\delta$, that

$$\mathcal{R}_{\mathcal{T}} = O\left(rac{d\log(1/\delta)}{\Delta}
ight)$$

The shared structure lets us learn a lot!

Review

- Setting: adversarial bandits
 - Exp3 (exponential weights)
- Setting: stochastic bandits
 - UCB (optimism)
 - Thompson Sampling (probablity matching)
- Setting: pure exploration
 - Successive Elimination (action-elimination)
- · Setting: linear contextual bandits
 - OFUL (optimism)

Thanks!

References

- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In *Advances in Neural Information Processing Systems*, pages 2312–2320, 2011.
- Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thompson sampling. In *Artificial intelligence and statistics*, pages 99–107, 2013.
- Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. 2009.
- Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine Learning Research*, 3(Nov): 397–422, 2002.
- Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine learning*, 47(2-3):235–256, 2002a.

- Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. SIAM journal on computing, (1):48–77, 2002b.
- Gábor Bartók, Dean P Foster, Dávid Pál, Alexander Rakhlin, and Csaba Szepesvári. Partial monitoring classification, regret bounds, and algorithms. *Mathematics of Operations Research*, (4):967–997, 2014.
- Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial bandits. In *Conference on Learning Theory*, pages 42–1, 2012.
- Victor H. de la Peña, Michael J. Klass, and Tze Leung Lai. Theory and applications of multivariate self-normalized processes. Stochastic Processes and their Applications, 119(12): 4210-4227, December 2009. ISSN 0304-4149.

Steven R. Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform chernoff bounds via nonnegative supermartingales. *Probab. Surveys*, 17:257–317, 2020. doi: 10.1214/18-PS321. URL https://doi.org/10.1214/18-PS321.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances in Applied Mathematics*, (1):4–22, 1985.

Shie Mannor and Ohad Shamir. From bandits to experts: On the

value of side-observations. In *Advances in Neural Information Processing Systems*, pages 684–692, 2011.

Gergely Neu. Explore no more: Improved high-probability regret

bounds for non-stochastic bandits. In Advances in Neural

Information Processing Systems (NIPS), pages 3168–3176, 2015.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two

probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

Julian Zimmert and Yevgeny Seldin. An optimal algorithm for

Conference on Artificial Intelligence and Statistics, pages

467-475, 2019.