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Positioning this Tutorial

• Building up tools in support of RL
• Exploring surrounding viewpoints, problems and methods
• Soaking up “Culture”



Working Definitions

Context: interactive decision making in unknown environment

Aim: Design systems to amass reward in many environments.

Main distinction: model of environment

• Reinforcement Learning action affects future state
• Bandits action affects observation
• Full Inf. Online Learning action affects reward
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On the Menu

Two parts:

(1) Full Information Online Learning
(2) Bandits (w. Alan Malek)



Full Information Online Learning

1. Two Basic Problems

Online Convex Optimisation; Online Gradient Descent

The Experts Problem; Exponential Weights

2. Two Peeks Beyond the Basics

Follow the Regularised Leader and Mirror Descent

Online Quadratic Optimisation; Online Newton Step

3. Applications

Classical Optimisation

Stochastic Optimisation

Saddle Points in Two-player Zero-Sum Games

4. Conclusion and Extensions



Two Basic Problems



Setup

• Focus on losses (negative rewards)
• Model Environment as Adversary
• Online Convex Optimisation (OCO) abstraction.



OCO Problem

Protocol: Online Convex Optimisation
Given: game length T, convex action space U ⊆ Rd

For t = 1,2, . . . ,T,
• The learner picks action wt ∈ U
• The adversary picks convex loss ft : U → R
• The learner observes ft / full information
• The learner incurs loss ft(wt)

The goal: control the regret (w.r.t. the best point after T rounds)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u)

using a computationally efficient algorithm for learner.
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Design Principle

Learner needs to “chase” the best point arg minu∈U
∑T

t=1 ft(wt).
But doing so naively overfits.

Idea: add regularisation. Two manifestations:

• Penalise excentricity “FTRL style”
• Update iterates, but only slowly “MD style”

Will see examples of both. For our purposes, these are roughly
equivalent



Online Gradient Descent (OGD) Algorithm

Let U be a convex set containing 0. Fix a learning rate η > 0.
Algorithm: Online Gradient Descent (OGD)
OGD with learning rate η > 0 plays

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

where ΠU (w) = arg minu∈U‖u−w‖ is the projection onto U .

U

wt add −η∇
ft(wt)

wt+1
project

Figure 1: OGD update



Online Gradient Descent Result

Algorithm: OGD

w1 = 0 and wt+1 = ΠU (wt − η∇ft(wt))

Assumption: Boundedness
Bounded domain maxu∈U‖u‖ ≤ D and gradients ‖∇ft(wt)‖ ≤ G.

Theorem (OGD regret bd, Zinkevich 2003)

RT =
T∑
t=1

ft(wt)− min
u∈U

T∑
t=1

ft(u) ≤ 1
2ηD

2 +
η

2TG
2

Corollary
Tuning η = D

G
√
T
results in RT ≤ DG

√
T .

Sublinear regret: learning overhead per round → 0.
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Proof of OGD regret bound

Using convexity, we may analyse the tangent upper bound

ft(wt)− ft(u) ≤ 〈wt − u,∇ft(wt)〉

Moreover,

‖wt+1 − u‖2 = ‖ΠU (wt − η∇ft(wt))− u‖2

≤ ‖wt − η∇ft(wt)− u‖2

= ‖wt − u‖2 − 2η〈wt − u,∇ft(wt)〉+ η2‖∇ft(wt)‖2

Hence

〈wt − u,∇ft(wt)〉 ≤
‖wt − u‖2 − ‖wt+1 − u‖2

2η +
η

2‖∇ft(wt)‖2



Proof of OGD regret bound (ctd)

Summing over T rounds, we find

Ru
T ≤

T∑
t=1
〈wt − u,∇ft(wt)〉

≤
T∑
t=1

‖wt − u‖2 − ‖wt+1 − u‖2

2η︸ ︷︷ ︸
telescopes

+
η

2

T∑
t=1
‖∇ft(wt)‖2

≤ ‖u‖
2 −������
‖wT+1 − u‖2

2η +
η

2

T∑
t=1
‖∇ft(wt)‖2

≤ D2

2η +
η

2TG
2



OCO Lower Bound

Is OGD regret bound of RT ≤ GD
√
T any good?

Scaling with G and D is natural. What about
√
T?

Theorem
Any OCO algorithm can be made to incur RT = Ω(

√
T).

Proof (by probabilistic argument).
Consider interval U = [−1,1] and linear losses ft(u) = xt · u with
i.i.d. Rademacher coefficients xt ∈ {±1}. Any algorithm has
expected loss zero. The expected loss of the best action (±1)
is −E[|

∑T
t=1 xt|] = −Ω(

√
T). Then as the expected regret is

E[RT ] = Ω(
√
T), there is a deterministic witness.

Here, the regret arises from overfitting of the best point.
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OGD Discussion

• Adversarial result, super strong!
• Proof reveals it is really about linear losses.
• Matching lower bounds

Successful in practise:

• Practically all deep learning uses versions of online gradient
descent (e.g. TensorFlow has AdaGrad [Duchi et al., 2011])
even though objective not convex.



From Learning Parameters to Picking Actions

We now turn to the second elementary online learning task.

• Decision Theoretic Online Learning
• Experts setting (also: Hedge setting)
• Prediction with Expert Advice

Protocol: Prediction With Expert Advice
Given: game length T, number K of experts
For t = 1,2, . . . ,T,
• Learner chooses a distribution wt ∈ 4K on K “experts”.
• Adversary reveals loss vector `t ∈ [0,1]K .
• Learner’s loss is the dot loss wᵀ

t `t =
∑K

k=1wk
t `

k
t

The goal: control the regret (w.r.t. the best expert after T rounds)

RT =
T∑
t=1

wᵀ
t `t − min

k∈[K]

T∑
t=1

`kt

using a computationally efficient algorithm for learner.
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Let’s apply what we know

Observations:

• Dot loss u 7→ uᵀ`t is linear (hence convex).
• Gradient `t ∈ [0,1]K bounded by ‖`t‖ ≤

√
K.

• Probability simplex 4K is contained in unit ball.

So: Instance of Online Convex Optimisation.

OGD with D = 1 and G =
√
K gives RT ≤

√
KT.

Q: Optimal?

Maybe not. There are no points with loss difference
√
K in the

simplex . . .
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Exponential Weigths / Hedge Algorithm

Algorithm: Exponential Weights (EW)
EW with learning rate η > 0 plays weights in round t:

wk
t =

e−η
∑t−1

s=1 `
k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s
. (EW)

or, equivalently, wk
1 = 1

K and

wk
t+1 =

wk
t e−η`

k
t∑K

j=1w
j
te−η`

j
t

(EW, incremental)

Theorem (EW regret bd, Freund and Schapire 1997)
The regret of EW is bounded by RT ≤ ln K

η + T η8 .

Corollary

Tuning η =
√

8 ln K
T yields RT ≤

√
T/2 lnK.
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EW Analysis

Applying Hoeffding’s Lemma to the loss of each round gives
T∑
t=1

wᵀ
t `t ≤

T∑
t=1

(
−1
η

ln

( K∑
k=1

wk
t e−η`

k
t

)
︸ ︷︷ ︸

“mix loss”

+ η/8︸︷︷︸
overhead

)

Crucial observation is that cumulative mix loss telescopes
T∑
t=1

−1
η

ln

( K∑
k=1

wk
t e−η`

k
t

)
=

T∑
t=1

−1
η

ln

( K∑
k=1

e−η
∑t−1

s=1 `
k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s
e−η`

k
t

)

=
T∑
t=1

−1
η

ln

(∑K
k=1 e−η

∑t
s=1 `

k
s∑K

j=1 e−η
∑t−1

s=1 `
j
s

)

telescopes
=

−1
η

ln

( K∑
k=1

e−η
∑T

t=1 `
k
t

)
+

lnK
η

≤ min
k∈[K]

T∑
t=1

`kt +
lnK
η
.



Summary so far

Balancing act: “model complexity” vs “overfitting”

Theorem (OGD)

RT ≤ D2

2η + η
2G

2T

Theorem (EW)
RT ≤ ln K

η + η
8T

Generates many follow-up questions:

• What if horizon T is not fixed? Anytime guarantees?
• What if gradient bound G is not known a priori?
• Can we have the actual gradient norms?
• What if model complexity (D) is not known? Not uniformly
bounded? See Orabona and Cutkosky ICML’20 tutorial.

Need refined analyses ⇒ Restarts (doubling trick), decreasing ηt
(AdaGrad/AdaHedge), learning the learning rate η (MetaGrad),
. . .

Active research area!

https://parameterfree.com/icml-tutorial/
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Two Peeks Beyond the
Basics



FTRL/MD “sneak peek”

Q: What if my domain does not look like either ball or simplex?

Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent (MD)

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Examples:
Regularizer R Bregman Divergence B

OGD sq. Euclidean norm sq. Euclidean distance
EW Shannon entropy Kullback-Leibler divergence

Other entropies: Burg, Tsallis, Von Neumann, . . . Connections to
continuous exponential weights [van der Hoeven et al., 2018].
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FTRL/MD “sneak peak” performance

Algorithm: Follow the Regularised Leader (FTRL)

wt+1 = arg min
u∈U

t∑
s=1
〈u,∇fs(ws)〉+

1
η
R(u)

Algorithm: Mirror Descent

wt+1 = arg min
u∈U

〈u,∇ft(wt)〉+
1
η
B(u‖wt)

Theorem (AdaFTRL, Orabona and Pál 2015)
Fix a norm ‖·‖ with associated dual norm ‖·‖?. Let
R : U → [0,D2] be strongly convex w.r.t. ‖·‖. AdaFTRL ensures

RT ≤ 2D

√√√√ T∑
t=1
‖∇ft(wt)‖2? + 2 · loss range.
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Quadratic Losses

So far we used convexity to “linearise”

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉,

and our methods essentially operated on linear losses. But what
if we know there is curvature?

• How to represent/quantify curvature?
• How to efficiently manipulate curvature?
• How much can we reduce the regret?



Curvature assumptions

Assumption: Quadratic loss lower bound
There is a matrix Mt � 0 such that

ft(u) ≥ ft(wt) + 〈u−wt,∇ft(wt)〉+
1
2 (u−wt)

ᵀMt(u−wt)︸ ︷︷ ︸
=:qt(u)

for each u ∈ U .

Two main classes of instances

• squared Euclidean distance: ft(u) = 1
2‖u− xt‖

2 satisfies the
assumption with Mt = I. More generally, strongly convex
functions have Mt ∝ I.

• linear regression: ft(u) = (yt − 〈u,xt〉)2 satisfies the
assumption with Mt = xtx

ᵀ
t . More generally, exp-concave

functions have Mt ∝ ∇tft(wt)∇tft(wt)
ᵀ.
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t . More generally, exp-concave

functions have Mt ∝ ∇tft(wt)∇tft(wt)
ᵀ.



ONS Algorithm

Algorithm: Online Newton Step (FTRL variant)

wt+1 = arg min
u∈U

t∑
s=1

qs(u) +
1
2‖u‖

2

Computing the iterate wt+1 amounts to minimising a convex
quadratic. Often (depending on U) closed-form solution or 1d
line search.

• For Mt ∝ I, takes O(d) per round.
• For rank-one Mt, can do update in O(d2) per round.
• In both cases, need to take care of projection onto U .



ONS Performance

Algorithm: Online Newton Step (FTRL version)

wt+1 = arg min
u∈U

t∑
s=1

qs(u) +
1
2‖u‖

2

Theorem (ONS strcvx bd, Hazan et al. 2006)
For the strongly convex case Mt ∝ I, ONS guarantees

RT = O(lnT)

Algorithm reduces to OGD with specific decreasing step-size ηt

Theorem (ONS expccv bd, Hazan et al. 2006)
For the exp-concave case Mt ∝ gtg

ᵀ
t , ONS guarantees

RT = O(d lnT)



ONS Discussion

• Convex quadratics closed under taking sums. Run-time
independent of T.

• Curvature gives huge reduction in regret:
√
T to lnT.

• Matrix sketching techniques allow trading off run-time O(d2)

vs O(d) with regret O(lnT) vs O(
√
T) [Luo et al., 2016].



Applications



Application 1: Offline Optimisation

Problem
Given gradient access to a convex f , find a near-optimal point.

Idea: run OGD on ft = f for T rounds. Regret bound gives

T∑
t=1

f (wt)− T min
u∈U

f (u) ≤ GD
√
T

We may divide by T and apply convexity to find

f

(
1
T

T∑
t=1

wt

)
− min

u∈U
f (u) ≤ GD√

T

Find ε-suboptimal point (iterate average) after T = G2D2

ε2 rounds.

Why would we optimise this way? For example, what if ft → f .
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Application 2: Online to Batch

Assumption: stochastic setting
Suppose training set f1, . . . , fT and test point f drawn i.i.d. from
unknown P.

Problem
Learn a point ŵT from the training set that generalises to P,
i.e. behaves like u∗ = arg minu∈U Ef [f (u)]

Idea: use online learning algorithm on training set f1, . . . , fT , to
get iterates w1, . . . ,wT . Output the average iterate estimator

ŵT =
1
T

T∑
t=1

wt.

Theorem
An online regret bound RT ≤ B(T) implies

Eiid f1, . . . , fT , f [f (ŵT)− f (u∗)] ≤ B(T)

T
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Application 3: Computing Saddle Points

Assumption: convex-concave
Fix an objective function

g(x,y)

convex in x, concave in y.

The game value is

V∗ = min
x

max
y

g(x,y) = max
y

min
x
g(x,y).

An ε-saddle point (x̄, ȳ) satisfies

V∗ − ε ≤ min
x
g(x, ȳ) ≤ V∗ ≤ max

y
g(x̄,y) ≤ V∗ + ε.

Problem
Find an ε-saddle point

Idea: play regret minimisation algorithms for x and y.
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V∗ − ε ≤ min
x
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V∗ − ε ≤ min
x
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Application 3: Saddle Point Algorithm

Algorithm: approximate saddle point solver
For t = 1,2, . . . ,T
• Players play xt and yt.
• Players see loss functions x 7→ +g(x,yt) and y 7→ −g(xt,y).
Output average iterate pair x̄T = 1

T
∑T

t=1 xt and ȳT = 1
T
∑T

t=1 yt

Assume the players have regret (bounds) Rx
T and R

y
T , i.e.

T∑
t=1

+g(xt,yt)−min
x

T∑
t=1

+g(x,yt) ≤ Rx
T

T∑
t=1
−g(xt,yt)−min

y

T∑
t=1
−g(xt,y) ≤ Ry

T

Theorem (self-play, Freund and Schapire 1999)

x̄T and ȳT form an R
x
T+Ry

T
T -saddle point.



Application 3: Saddle Point Analysis

V∗ = min
x

max
y

g(x, y)

≤ max
y

g(x̄T , y)

≤ max
y

1
T

T∑
t=1

g(xt, y)

≤
1
T

T∑
t=1

g(xt, yt) +
Ry

T
T

≤ min
x

1
T

T∑
t=1

g(x, yt) +
Rx

T +Ry
T

T

≤ min
x

g(x, ȳT) +
Rx

T +Ry
T

T

≤ min
x

max
y

g(x, y) +
Rx

T +Ry
T

T

= V∗ +
Rx

T +Ry
T

T



Conclusion and Extensions



Conclusion

• Online Learning a powerful and versatile tool
• Environment-as-black-box. Adversarial.
• Foundation for optimisation, statistical learning, games, . . .

Some (of many) cool things we left out:

• First-order (small loss) and second-order (small variance)
bounds

• Adaptivity to friendly stochastic environments (best of both
worlds, interpolation)

• Optimism (predicting the upcoming gradient)
• Non-stationarity (tracking, adaptive/dynamic regret, path
length)

• Beyond convexity (star-convex, geometrically convex, . . . )
• Supervised Learning and (stochastic) complexities (VC,
Littlestone, Rademacher, . . . )
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Thanks!
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What is a Bandit?



The Basic Bandit Game

Protocol: A Bandit Game
Given: game length T, action space A
For t = 1,2, . . . ,T,
• The learner picks action At ∈ A
• The adversary simultaneously picks reward rt ∈ A → [0,1]

• The learner observes and receives rt(At)
• The learner does not observe rt(a) for a 6= At

The goal: control the regret (a random variable)

RT = max
a∈A

T∑
t=1

rt(a)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(At) (1)



Bandits as a super simple MDP

• S = {the_state}, P(the_state|the_state,a) = 1
• Why should we care about this in RL?

• Creates a tension between
• Exploration (learning about the loss of actions)
• Exploitation (playing actions that will have low regret)

• Exploration/Exploitation is absent in full-information, present
in RL

• Model is simple enough to allow for comprehensive theory
• Easily incorporates adversarial data
• Useful algorithm design principles



The Regret

RT = max
a∈A

T∑
t=1

rt(a)︸ ︷︷ ︸
Best action in hindsight

−
T∑
t=1

rt(At)

• RT is a random variable we do not observe
• Different objectives, from easiest to hardest

• Pseudo-regret RT = maxa∈A E
[∑T

t=1 rt(a)
]
− E

[∑T
t=1 rt(At)

]
• Expected regret E[RT ] = E

[
max
a∈A

T∑
t=1

rt(a)︸ ︷︷ ︸
can depend on At

−
∑T

t=1 rt(At)

]

• High probability bounds on the realized regret
• We always have RT ≤ E[RT ]

• If the adversary is reactive, then the distribution of rt can be
a function of A1, . . . ,At−1

• Otherwise, the adversary is oblivious and RT = E[RT ]



Our focus

• Introduce most popular bandit problems
• Adversarial Bandits
• Stochastic Bandits
• Pure Exploration Bandits
• Contextual Bandits (time permitting)

• Concentrate on useful algorithm design principles
• Exponential weights (still useful)
• Optimism in the face of Uncertainty
• Probability matching (i.e. Thompson sampling)
• Action-Elimination



Other Settings that haven been considered

• Data models for rt
• chosen by an adversary
• sampled i.i.d.
• stochastic with adversarial perturbations...

• Action spaces
• Finite number of arms
• A vector space (rt are functions)
• Combinatorial (e.g. subsets, paths on a graph)

• Objectives
• Pseudo-regret (the expectation over the learner’s
randomness)

• Realized regret (with high probability)
• Best-arm identification a.k.a. pure exploration

• Side information
• Linear rewards
• Competing with a policy class

• ...



Adversarial Bandits



Adversarial Protocol

Protocol: Finite-Arm Adversarial Bandit Protocol
Given: game length T, number of arms K
For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The adversary simultaneously picks losses `t ∈ [0,1]K

• The learner observes and receives `t(It)

• The results are easier to state using losses instead of
rewards

• Randomization of It is essential
• We are familiar with adversarial data from the first half
• The simple idea of estimating `t from `t(It) and then
applying a full-information algorithm works very well



Algorithm Design Principle: Exponential Weights

Algorithm: Exp3 [Auer et al., 2002b]
Given: number of arms K, learning rate η > 0, length T
Initialize p0(i) = 1/K, L̂0(i) = 0 for all i ∈ [K]

For t = 1,2, . . . ,T:
• Sample It ∼ pt and observe `t(It)
• Estimate ˆ̀t(i) = `t(It)

pt(It)1{It=i} and L̂t = ˆ̀t + L̂t−1
• Calculate Wt =

∑
j e−ηL̂t(j) and pt(i) = 1

Wt
e−ηL̂t(i)

• Exp3 = Exponential Weights for Exploration and Exploitation
• ˆ̀t is the importance-weighted estimator of `t
• ˆ̀t is unbiased:

EIt∼pt [ˆ̀t(It)] = E
[
`t(It)
pt(It)

1{It=i}

]
=
∑
i

pt(i)
`t(It)
pt(It)

1{It=i} = `t(i).

• Exp3 runs exponential weights on ˆ̀t



Exp3: Analysis

• Following the EW analysis, Wt is a potential function
• For any i∗, e−ηL̂T(i∗) ≤

∑
j e−ηL̂T(j) = WT = W0

∏T
t=1

Wt
Wt−1

.

Wt

Wt−1
=

∑
j e−ηL̂t−1(j)e−η ˆ̀t(j)∑

j e−ηL̂t−1(j)
=
∑
j

pt−1(j)e−η ˆ̀t(j)

≤
∑
j

pt−1(j)
(
1− η ˆ̀t(j) +

η2

2
ˆ̀t(j)2

)
︸ ︷︷ ︸

since ex≤1+x+ 1
2 x2 for x≤0

= 1− η
∑
j

pt(j)ˆ̀t(j) +
η2

2
∑
j

pt(j)ˆ̀t(I)2

≤ e−η
∑

j pt(j)ˆ̀t(j)+ η2
2
∑

j pt(j)ˆ̀t(j)2︸ ︷︷ ︸
since 1+x≤ex



Exp3: Analysis

• Computing the telescope,

e−ηL̂T(i∗) ≤W0

T∏
t=1

Wt

Wt−1
≤ K

T∏
t=1

e−η
∑

j pt(j)ˆ̀t(j)+ η2
2
∑

j pt(j)ˆ̀t(j)2

• We rearrange, divide by η, and take the log:

T∑
t=1

∑
j

pt(j)ˆ̀t(j)− L̂T(i∗) ≤ log(K)

η
+
η

2

T∑
t=1

∑
j

pt(j)ˆ̀t(j)2

=
log(K)

η
+
η

2

T∑
t=1

∑
j

pt(j)
`t(j)2

pt(j)2
1{It=j}

≤ log(K)

η
+
η

2

T∑
t=1

∑
j

1{It=j}

pt(It)
.



Exp3: Analysis

• Take the expectation

RT ≤ E

 T∑
t=1

∑
j

pt(j)ˆ̀t(j)− L̂T(i∗)


≤ 1
η

log(K) +
η

2

T∑
t=1

E

 T∑
t=1

∑
j

1{It=j}

pt(It)


≤ 1
η

log(K) +
η

2TK.

Theorem (Exp3 upper bound [Auer et al., 2002b])

With η =
√

2 log(T)
TK , Exp3 has RT ≤

√
2TK log(K).

Only get pseudo-Regret bounds because the i∗ in the proof was
fixed, not a function of I1, . . . , IT .



Lower Bounds

Theorem (Adversarial Bandits lower bound [Auer et al.,
2002b])
Any adversarial bandit algorithm must have

RT = Ω(
√
TK)

• Exp3 upper bound: RT ≤
√
2TK log(K)

• First matching upper bound achieved by INF [Audibert and
Bubeck, 2009] (which is Mirror Descent)



Upgrades

• High Probability bounds: requires a lower-variance estimate
of ˆ̀t or an algorithm that keeps pt(i) away from zero
• Exp3.P [Auer et al., 2002b] uses ˆ̀t(i) =

1{It=i}`t(It)−β
pt(It)

• Exp3-IX [Neu, 2015] uses ˆ̀t(i) =
1{It=i}`t(It)
pt(It)+γ

• Experts with bandits; each arm is an expert that
recommends actions and you compete with the best expert
(Exp4 algorithm) [Auer et al., 2002b]

• Competing with strategies that can switch [Auer, 2002]
• Feedback determined by a graph [Mannor and Shamir,
2011]

• Partial Monitoring [Bartók et al., 2014]
• Combinatorial action spaces...



Stochastic Bandits



Protocol

Protocol: Stochastic Bandits Protocol
Given: game length T, number of arms K
Assume unknown reward distributions ν1, . . . , νK
For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt ∼ νIt

• Stochastic bandits is an old problem [Thompson, 1933]
• We will use the following notation

• Reward of arm i is sampled from νi with µi := EX∼νi [X]

• i∗ = arg maxi µi is the best arm
• Gaps ∆i := µ∗ − µi ≥ 0,
• Number of pulls Ni,t :=

∑t
s=1 1{Is=i}

• Empirical mean µ̂i,t :=
∑t

s=1 Xs1{Is=i}
Ni,t



Protocol

Protocol: Stochastic Bandits Protocol
Given: game length T, number of arms K
Assume unknown reward distributions ν1, . . . , νK
For t = 1,2, . . . ,T,
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt ∼ νIt

• We still want to minimize the expected regret, which has
the useful decomposition

E[RT ] = Tµi∗ −
∑T

t=1 E[Xt] =
∑

i ∆iE[Ni,T ]

Assumption: 1-sub-Gaussian reward distributions
For all stochastic bandit problems, we will assume that all arms
are 1-sub-Gaussian, i.e. EX∼µi [eλ(X−µi)2−λ2/2] ≤ 1. This implies

P(µ̂i,t − µi ≥ ε) ≤ e−
ε2t
2 .



Warm-up: Explore-Than-Commit

Algorithm: Explore-Than-Commit
Given: Game length T, exploration parameter M
For t = 1,2, . . . ,MK:
• Choose it = (t mod K), see Xt ∼ νit
Compute empirical means µ̂i,mK

For t = MK + 1,MK + 2, . . . ,T:
• Pull arm i = arg maxi µ̂i,mK

• The first strategy you might try
• A proof idea that we will return to: bound regret by first
bounding E[Ni,T ].

• In this simple algorithm,

E[Ni,T ] = M + (T −MK)P

(
i = arg max

j
µ̂j,MK

)



Explore-than-Commit Upper Bound

Using the sub-Gaussian concentration bound,

P

(
i = arg max

j
µ̂j,MK

)
≤ P (µ̂i,MK ≥ µ̂i∗,MK)

= P ((µ̂i,MK − µi) ≥ (µ̂i∗,MK − µi∗) + ∆i)

≤ e−
M∆2

i
4 (the difference is

√
2/M-sub-Gaussian)

Theorem (Explore-than-Commit upper bound)

E[RT ] =
∑
i

∆iE[Ni,T ] ≤
K∑
i=1

∆i

(
M + (T −MK)e−

M∆2
i

4

)

• If we know ∆, then m = 4
∆2

1
log

T∆2
1

4 , results in

E[RT ] ≤
∑K

i=1
4

∆1
log

T∆2
1

4 + T 4
T∆2

1
= O

(
K log(T)

∆1

)
• But we don’t know ∆...can we be adaptive?



Algorithm Design Principle: OFU

• OFU: Optimism in the Face of Uncertainty
• We establish some confidence set for the problem instance
(e.g. means) to within some confidence set

• We then assume the most favorable instance in the
confidence set and act greedily

Algorithm: UCB1 [Auer et al., 2002a]
Given: Game length T
Initialize: play every arm once
For t = K + 1,2, . . . ,T:
• Compute upper confidence bounds Bi,t−1 =

√
6 log(t)
Ni,t−1

• Choose It = arg maxi µ̂i,t−1 + Bi,t−1, observe Xt ∼ νIt
• Update Ni,t = Ni,t−1 + 1{It=i} and µ̂i,t =

∑t
s=1 1{Is=i}Xs

Ni,t



UCB Illustration
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UCB Illustration
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UCB: Intuition

• Naturally balances exploration and exploitation: an arm has
a high UCB if
• It has a high µ̂i,t, or
• Bi,t is large because Ni,t−1 is small

• Optimistic because we pretend the rewards are the
plausibly best and then do the greedy thing



UCB: Analysis

• Define Mi =
⌈
12 log(n)

∆2
i

⌉
, the number of pulls of arm i such that

Bi,t =
√

6 log(t)
Ni,t

≤
√

6 log(n)
Ni,t

≤ ∆j
2

• The intuition of the proof is
1. Since RT =

∑
i ∆iE[Ni,T ], we bound E[Ni,t] first.

2. With high probability, we will never pull arm i more than Mi

times, so

E[Ni,T ] = E
T∑
t=1

1{It=i} = Mi +
T∑

t=Mi

E1{It=i,Ni,t>Mi}︸ ︷︷ ︸
we will bound this

3. If {It = i,Ni,t > Mi} occurs, then the UCB for i∗ or for i must be
wrong (next slide)



UCB: Analysis

Claim: if {It = i,Ni,t > Mi} occurs, then the UCB for i∗ or for i must
be wrong.

Suppose that Ni,t > Mi, µ̂i,t + Bi,t ≥ µi, and µ̂i∗,t + Bi∗,t ≥ µi∗ . Then

µ̂i∗,t + Bi∗,t ≥ µi∗ = µi + ∆i ≥ µi + 2Bi,t︸︷︷︸
by choice of Bi,t

≥ µ̂i,t + Bi,t,

so the algorithm will not choose It = i. Hence, one (or both) of
upper bounds must be wrong.

Reward
µ̂i∗ + Bi∗,tµi∗µi µ̂i,t µ̂i,t + Bi,t

∆i ≥ 2Bi,t

≤ Bi,t ≤ Bi,t

Hence, we must bound P (µ̂i,t + Bi,t ≤ µi).



UCB: Analysis

Using our sub-Gaussian concentration inequality,

P (µ̂i,t + Bi,t ≤ µi) ≤ P

(
∃s ≤ t : µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1
P

(
µ̂i,s − µi ≤

√
6 log(t)

s

)

≤
t∑

s=1
exp

{
−3 log(t)

s

}
≤

t∑
s=1

t−3 ≤ t−2.

The same inequality holds for i∗, so

RT =
∑
i

∆iE[Ni,T ] ≤
∑
i

∆i

12 log(n)

∆2
i

+ 2
T∑

t=Mi+1
t−2
 .



UCB: Analysis Step 2

Theorem (UCB upper bound [Auer, 2002])
The UCB1 algorithm on 1-sub-Gaussian data has

RT ≤
∑
i

12 log(n)

∆j
+ o(1).

Theorem (Lower Bound [Lai and Robbins, 1985])
Suppose we have a parametric family Pθ, for some θ1, . . . , θk

lim inf
T→∞

RT
log(T)

≥
∑
i6=i∗

∆i

KL(Pθi ,Pθi∗ )
≈ O

∑
i6=i∗

1
∆i



E.g. if Pθ is Bernoulli, then (θi−θi∗ )2

θi∗ (1−θi∗ ) ≥ KL(Pθi ,Pθi∗ ) ≥ 2(θi − θi∗)2.
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Lower Bound Reasoning

• Fix a strategy and consider two problem instances:
1. ν1, ν2, . . . , νk; with P as the joint distribution over (It, ri,t)
2. ν1, ν′2, . . . , νk; with P′ as the joint distribution over (It, ri,t)
3. The optimal arm is different: µ′2 ≥ µ1 ≥ µ2 ≥ µ3 ≥ . . .
4. The data from P and P′ will look very similar

• An algorithm that does well on P must not pull arm 2 too
many times; hence, it will not do well on P′

• “Similar” is quantified by a change-of-measure identity; e.g.
P′(A) = e−k̂lN2,T P(A), where k̂lt =

∑t
s=1 log dν2

dν′2
(X2,s)

• Hence, an algorithm cannot tell if it is P or P′ and must get
high regret under P′, mistakenly believing it is playing in P



Algorithm design principle: probability matching

• We put a π over µi and a likelihood νi = P(·|µi) over arm i
• We choose P(It = i) = P(µi = µi∗ |history)

• We usually pick conjugate models (e.g. µi ∼ N(0,1),
Xt ∼ N(µi,1))

Algorithm: Thompson Sampling
Given: game length T, prior π(µ), likelihoods p(·|µ)

Initialize posteriors pi,0(µ) = π(µ)

For t = 1,2, . . . ,T:
• Draw θi,t ∼ pi,t−1 for all i
• Choose It = arg maxi θi,t

• Receive and observe Xt ∼ νIt
• Update the posterior pIT ,t(µ) = p(Xt|µ)pIt,t−1(µ)

• We put a π over µi and a likelihood νi = P(·|µi) over arm i
• We choose P(It = i) = P(µi = µi∗ |history)

• We usually pick conjugate models (e.g. µi ∼ N(0,1),
Xt ∼ N(µi,1))



Thompson Sampling: Overview

• Not Bayesian; uses Bayesian techniques, but the
guarantees are frequentist

• Arms with small Ni,t implies a wide posterior, hence a good
probability of being selected

• Generally performs empirically better that UCB
• Arms with small Ni,t implies a wide posterior, hence a good
probability of being selected

• Analysis is difficult



Thompson Sampling: Upper Bound

Theorem (Agrawal and Goyal [2013])
For binary rewards, Gamma-Beta Thompson sampling has
E[RT ] ≤ (1 + ε)

∑
i 6=i∗ ∆i

log(T)
KL(µi,µi∗ ) + O

( N
ε2

)
.

• The proof is much more technical that UCB’s
• We cannot rely on the upper bounds being correct w.h.p.
• For some to-be-tuned µi ≤ xi ≤ yi ≤ µi∗ , we have

E[Ni,T ] ≤
T∑
t=1

P(It = i)

≤
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≥ yi) (O
(

log(T)

kl(xj,yj)

)
)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi) (the tricky case)

+
T∑
t=1

P(It = i, µ̂i,t−1 ≥ xi) (Small by concentration)



Thompson Sampling: Proof Outline

• The tricky case is∑T
t=1 P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)

• This happens when we have enough samples of i but not
many of i∗

• A key lemma argues that, on µ̂i,t−1 ≤ xi, θi,t ≤ yi, the
probability of picking i is a constant less than of picking i∗:

T∑
t=1

P(It = i, µ̂i,t−1 ≤ xi, θi,t ≤ yi)

≤
T∑
t=1

P(θi∗,t ≤ yi)
P(θi∗,t > yj)︸ ︷︷ ︸

exponentially small

P(It = i∗, µ̂i,t−1 ≤ xi, θi,t ≤ yi) = O(1)

• Hence, we will quickly get enough samples of i∗



Best of Both Worlds

• The stochastic and adversarial algorithms are quite different
• A natural question: is there an algorithm that

• gets RT = O(
√
TK) regret for adversarial

• gets Rt = O(
∑

i log(T)/∆i) regret for stochastic
• without knowing the setting?

• Bubeck and Slivkins [2012] propose an algorithm that
assumes stochastic but falls back to UCB once adversarial
data is detected

• Zimmert and Seldin [2019] show that (for pseudo-regret), it
is possible
• Their algorithm: online mirror descent with 1

2 -Tsallis entropy
• Ψ(w) = −

∑
i 4(
√
wi − 1

2wi)



Pure Exploration



A new problem

• What if we only wanted to identify the best arm i∗ without
caring about loss along the way?

• Intuitively, we would explore more; we are happy to accrue
less reward if we get more useful samples.

• More similar to hypothesis testing; useful for selecting
treatments

• Known as “Best Arm Identification” or “Pure Exploration”



Two settings

Protocol: Best-arm identification protocol
Given:number of arms K
For t = 1,2, . . . ,
• The learner picks arm It ∈ {1, . . . ,K}
• The learner observes Xt ∼ νIt
• The learner decides whether to stop
The learner returns arm A

Two settings:

fixed-confidence fixed-budget
Input δ > 0, ε > 0 T
Goal arm A is (ε, δ)-PAC maximize P(A = i∗)
Stopping once learner is confident after T rounds

Arm A is (ε, δ)-PAC if P(µA ≥ µi∗ − ε) ≥ 1− δ.



• Standard stochastic bandit algorithms under explore (they
fail to meet lower bounds on this problem)

• Many can be adapted
• LUCB [?]
• Top-Two Thompson Samping [?]

• Instead, we will describe a new algorithm design principle



Algorithm Design Principle: Action Elimination

Algorithm: Successive Elimination
Given: confidence δ > 0
Initialize plausibly-best set S = {1, . . . ,K}
For t = 1,2, . . .:
• Pull all arms in S and update µ̂i,t
• Calculate Bt =

√
t−1 log(nt2/δ)

• Remove i from S if max
j∈S

µ̂j,t − Bt︸ ︷︷ ︸
Lowest µ∗i could be

≥ µ̂i,t + Bt︸ ︷︷ ︸
highest µi could be

• If |S| = 1, stop and return A = S.

• S is a list of plausibly-best arms
• Each epoch, all arms that cannot be the best (if the bounds
hold) are removed



Successive Elimination Analysis

• Define the “bad event” E =
⋃
i,t{|µ̂i,t − µi| ≤ Bt(δ)}: we have

P(E) ≤
∑
i,t

P
(
|µ̂i,t − µi| ≤

√
t−1 log(Kt2/δ)

)
≤
∑
i,t

2e−
1
2 log

(
Kt2
δ

)

≤
∑
i,t

2e−2δ
Kt2

=
2e−2π2

6 δ ≤ δ

• (Correctness) If E does not happen,
• |µ̂i∗ − µi∗ | ≤ Bt and |µj − µ̂j| ≤ Bt for all j. Thus,
µ̂j − µ̂i∗ ≤ (µi∗ − µ̂i∗) + (µi∗ − µj) + (−µj − µ̂j∗) ≤ 2Bt

• i is removed if maxj∈S µ̂j,t − µ̂i,t ≥ 2Bt ⇒ i∗ is never removed
• limt→∞ Bt(δ)→ 0: every arm will eventually be removed
• Hence, Successive Elimination is (0, δ)-PAC

• (Sample Complexity): arm i will be eliminated once ∆i ≤ 2Bt
• We can verify that Ni = O

(
∆−2i log(K/δ∆i)

)
is sufficient

• Total sample complexity of∑i ∆
−2
i log(K/δ∆i)

• Can convert to a (ε, δ)-PAC algorithm by stopping early



Linear Stochastic Bandits



Bonus: Linear Contextual Bandits

Protocol: Contextual Linear Bandit Protocol
Given: game length T, number of arms K
For t = 1,2, . . . ,T,
• The learner sees one context per arm c1,t, . . . , cK,t
• The learner picks action It ∈ {1, . . . ,K}
• The learner observes and receives reward Xt = 〈cIt,t, θ∗〉+ ξt

Regret is defined w.r.t. an agent that knows the true θ:

RT =
T∑
t=1

max
i
xᵀi,tθ

∗ −
T∑
t=1

Xt



Algorithm Design Principle: Optimism

Algorithm: OFUL [Abbasi-Yadkori et al., 2011]
Initialize θ̂0 = 0, B0 = Rd

For t = 1,2, . . . ,T:
• Receive contexts c1,t, . . . , cK,t
• Choose (It, θ̃t) = arg maxi∈{1,...,K},θ∈Bt−1 θ

ᵀci,t (optimism)
• Observe Xt = cᵀIt,tθ

∗ + ξt

• Calculate Vt =
∑t

s=1 csc
ᵀ
s + λI and rt =

√
log det(Vt)

δ2λd +
√
λ‖θ∗‖

• Calculate θ̂t = V−1t

(∑t
s=1 csXs

)
(ridge)

• Update Bt = {θ : (θ − θ̂t)ᵀVt(θ − θ̂t) ≤ rt)

• If ξt is 1-sub-Gaussian, Bt is a confidence sequence with
P(∀t > 0 : θ∗ ∈ Bt) ≥ 1− δ (more examples in [de la Peña
et al., 2009, Howard et al., 2020])



Analysis

• Regret decomposes over rounds:
• Recall that (It, θ̃t) = arg maxi∈{1,...,K},θ∈Bt−1 θ

ᵀci,t

Rt −Rt−1 = cᵀi∗t θ
∗ − cᵀItθ

∗

≤ cᵀIt θ̃t − c
ᵀ
Itθ
∗ (by optimism)

≤ cᵀIt
(
θ̃t − θ̂t−1

)
+ cᵀIt

(
θ̂t−1 − θ∗

)
≤ ‖cIt‖Vt

∥∥∥θ̃t − θ̂t−1∥∥∥
Vt︸ ︷︷ ︸

≤rt

+‖cIt‖Vt
∥∥∥θ̂t−1 − θ∗∥∥∥

Vt︸ ︷︷ ︸
≤rt

• After some algebra, we can show, with probability ≥ 1− δ,
that

RT = O
(
d log(1/δ)

∆

)
• The shared structure lets us learn a lot!



Review

• Setting: adversarial bandits
• Exp3 (exponential weights)

• Setting: stochastic bandits
• UCB (optimism)
• Thompson Sampling (probablity matching)

• Setting: pure exploration
• Successive Elimination (action-elimination)

• Setting: linear contextual bandits
• OFUL (optimism)



Thanks!
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