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Praise

An elegant framework emerges for the construction of anytime confidence
sequences.

Empowering theoreticians and practitioners.

We need principled (safe) statistics in practice.
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Q1: A Fine Distinction (a Confession)

Consider a property φ defined on a class of distributions P. How to build
confidence sequence for φ?

Definition

MP
n is a test supermartingale for P ∈ P if MP

0 = 1, MP
n ≥ 0 and

EP

[
MP

n+1

∣∣∣Fn

]
≤ MP

n

Idea: MP
n is evidence against {P}. But what about {φ(P) = ν}?

Definition

Mν
n is a simultaneous test supermartingale [Vovk et al. 2013] for
Pν := {P ∈ P|φ(P) = ν} if it is a test supermartingale for each P ∈ Pν .

Idea: Mν
n is evidence against {φ(P) = ν}.
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Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?

Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?

Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?

Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?

Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?

Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?

Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q1: A Fine Distinction (a Confession) ctd.

Many martingales considered in the talk/papers are simultaneous test
supermartingales.

For example the sub-Gaussian Mn = eλSn−nλ2/2, moment-constrained,
symmetric, products of “Safe Tests”, etc.

So simultaneous test supermartingales are powerful/useful.

Yet the only simultaneous supermartingale for the (parametric!) model
{i.i.d. Bernoulli(θ)|θ ∈ [0, 1]} is the trivial Mn = 1.

So one cannot disqualify i.i.d. Bernoulli? (E.g. using a time series)?

Yes of course one can. But not with a simultaneous test
supermartingale.

Q: power and limits of simultaneous supermartingales. Orthogonality?
Wouter Koolen Discussion: Ville, confidence, martingale Selective Inference 4 / 7

http://wouterkoolen.info
https://www.selectiveinferenceseminar.com/


Q2: A converse

Consider a property φ defined on a class of distributions P.

Definition

A random process Cn is an α-confidence sequence if

∀P ∈ P : P (∀n : φ(P) ∈ Cn) ≥ 1− α

Q: can we always obtain Cn using Ville?

Conjecture (Universality)

For each α-confidence sequence Cn there is a family of test martingales{
MP

n

∣∣P ∈ P} such that

Cn ⊇
{
φ(P)

∣∣∣P ∈ P and MP
n ≤ 1/α

}
.
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Q2: A converse

This forward “constructive” direction

Cn :=
{
φ(P)

∣∣∣P ∈ P and MP
n ≤ 1/α

}
raises the design question:

Q: how to craft
{
MP

n

∣∣P ∈ P} if you are interested in φ on P?

Sequential GROW criterion [Grünwald, De Heide, Koolen, 2019]?
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Questions

What is the “lego” of test supermartingales?
We saw constructions of the “sub-parametric” form

eλSn−ψ(λ)Vn

and moment constrained form [Agrawal, Juneja, Glynn, ALT 2020]

n∏
t=1

(
1 + λ1(Xt − µ) + λ2(X 2

t − b)

)
What else is out there? Are all forms extremal likelihood ratios?

Can we do tight stitching efficiently in software?
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