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Stochastic Bandit interaction.

Time
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Ideas

Tasks

1 Best Arm Identification: use trial to cure population

2 Reward Maximisation: cure patients in trial
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Ideas

This Talk

We will develop efficient structure-adaptive learning algorithms for Best
Arm Identification and Reward Maximisation.

Information-theoretic lower bounds will tell us that the complexity of
each task is characterised by a certain two-player zero-sum game.

We will base our learning algorithms on iterative saddle point solvers for
this game.
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Ideas

Why are we doing this?

Structure interesting in practise

Unimodal [Combes and Proutiere, 2014]

Lipschitz [Magureanu, Combes, and Proutière, 2014]

Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]

Linear [Lattimore and Szepesvári, 2017]

Sparse [Kwon, Perchet, and Vernade, 2017]

Categorised [Jedor, Perchet, and Louedec, 2019]

Combinatorial, duelling, . . .

Sub-modules (training ground) for

reinforcement learning

simulator-based planning

environments with selfish or adversarial agents
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Problem Settings

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, . . . ) parameterised
by the mean. KL divergence denoted by d(µ, λ).

Multi-armed bandit model

A K -armed bandit model is a tuple µ = (µ1, . . . , µK ).

Learning Target

The best arm for µ is
i∗(µ) := argmax

i
µi

Structure

Set of possible bandit models M⊆ RK .
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Problem Settings

Interaction

Learner Bandit µ

At

Xt ∼ µAt
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Problem Settings

Best Arm Identification: Strategy for Learner

Strategy

Stopping rule τ ∈ N
In round t ≤ τ sampling rule picks At ∈ [K ]. See Xt ∼ µAt .

Recommendation rule Î ∈ [K ].

Realisation of interaction: H :=
(
A1,X1, . . . ,Aτ ,Xτ , Î

)
.

Two objectives: sample efficiency τ and correctness Î = i∗(µ).
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Realisation of interaction: H :=
(
A1,X1, . . . ,Aτ ,Xτ , Î
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Wouter Koolen Bandits, Games, Explore/Exploit Noberwolfach 16 / 53



Problem Settings

Best Arm Identification: Strategy for Learner

Strategy

Stopping rule τ ∈ N
In round t ≤ τ sampling rule picks At ∈ [K ]. See Xt ∼ µAt .

Recommendation rule Î ∈ [K ].
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Problem Settings

Best Arm Identification Goal: PAC learning

Definition

Fix small confidence δ ∈ (0, 1). A strategy is δ-correct if

Pµ
(
Î 6= i∗(µ)

)
≤ δ for every bandit model µ ∈M.

Goal: minimise sample complexity Eµ[τ ] over all δ-correct strategies.

Hope

Efficient δ-correct algorithm with instance-optimal sample complexity

Eµ[τ ] � �µ ln 1
δ for all µ ∈M.
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Î 6= i∗(µ)

)
≤ δ for every bandit model µ ∈M.

Goal: minimise sample complexity Eµ[τ ] over all δ-correct strategies.

Hope

Efficient δ-correct algorithm with instance-optimal sample complexity

Eµ[τ ] � �µ ln 1
δ for all µ ∈M.

Wouter Koolen Bandits, Games, Explore/Exploit Noberwolfach 17 / 53



Problem Settings

Regret Minimisation: Strategy and Goal

In round t ≤ T sampling rule picks At ∈ [K ], and sees Xt ∼ µAt .

Realisation of interaction: H := (A1,X1, . . . ,AT ,XT ).

Definition

The objective is

RT (µ) :=
K∑

k=1

E[Nk
T ]∆k

where the sub-optimality gaps are given by ∆k = µ∗ − µk .

Hope

Efficient algorithm with instance-optimal regret

RT (µ) � �µ lnT for all µ ∈M.
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Lower Bounds Best Arm Identification

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations
are likely under both µ and λ, yet i∗(µ) 6= i∗(λ), then learner cannot stop
and be correct in both.

Define the alternative to µ by Alt(µ) := {λ ∈M|i∗(λ) 6= i∗(µ)}.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ ∈M

Eµ[τ ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈4K

min
λ∈Alt(µ)

K∑

i=1

wid(µi , λi )

wk ∝ Nk

pulls
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Lower Bounds Best Arm Identification

Example

K = 5 Bernoulli arms, µ = (0.4, 0.3, 0.2, 0.1, 0.0).

T ∗(µ) = 200.4 w∗(µ) = (0.45, 0.46, 0.06, 0.02, 0.01)

At confidence δ = 0.05 we have ln 1
δ = 3.0 and hence Eµ[τ ] ≥ 601.2.
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Lower Bounds Regret Minimisation

Instance-Dependent Regret Lower Bound

Theorem (Graves and Lai 1997)

Any asymptotically consistent algorithm for structureM must incur on
each µ ∈M regret at least

RT (µ) � V (µ) lnT

where the characteristic regret rate is given by

1

V (µ)
= max

w̃∈4
inf

λ∈Alt(µ)

∑

k

w̃k d(µk , λk)

∆k

w̃k ∝ Nk∆k

regret
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Algorithms

Lower Bounds Inspire Strategies

Recall sample complexity/regret lower bound governed by

max
w∈4K

min
λ∈Alt(µ)

K∑

i=1

wid(µi , λi ) or max
w̃∈4

inf
λ∈Alt(µ)

∑

k

w̃k d(µk , λk)

∆k

Matching algorithms must sample with argmax (oracle) proportions.
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Algorithms

Lower Bounds Inspire Strategies

Earlier work [Combes et al., 2017, Garivier and Kaufmann, 2016]
At each time step

compute plug-in oracle solution w∗(µ̂t) or w̃∗(µ̂t).

sample arm At to track that solution

force exploration to ensure µ̂t → µ.

Coming up

Iteratively solve lower bounds by full information online learning.

Use iterates to drive sampling rule.

Add optimism to induce exploration.

Cap gap estimates ∆̂t from below to reduce estimation variance

Compose regret bound from saddle-point regret + estimation regret
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Iterative Saddle-Point Methods

Interleaved Iterative Solution

Standard technique: can approximately solve saddle point problems like

max
w∈4K

min
λ∈Alt(µ)

K∑

i=1

wid(µi , λi ) or max
w̃∈4

inf
λ∈Alt(µ)

∑

k

w̃k d(µk , λk)

∆k

iteratively using two online learners.

Main pipeline [Degenne, Koolen, and Ménard, 2019]:

Plug-in estimate µ̂t (so problem is shifting).

Advance the saddle point solver by one iteration for every bandit
interaction.

Add optimism to gradients to induce exploration
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Iterative Saddle-Point Methods

Sampling Rule for Best Arm Identification

k-learnerAdaHedge Best response

argminλ∈Alt(µ̂t)

∑
k w

k
t d(µ̂kt , λ

k)

wt wt

λt∇t

Tracking

wt

Bandit

At

Estimate

Xt ∼ µAt

µ̂t
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Iterative Saddle-Point Methods

Sampling Rule for Regret Minimisation

k-learnerAdaHedge Best response

argminλ∈Alt(µ̂t)

∑
k w

k
t d(µ̂kt , λ

k)

w̃t wt

λt∇t

Tracking

wt

Bandit

At

Estimate

Xt ∼ µAt

µ̂t
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Iterative Saddle-Point Methods

Compositionality

The “overheads” of the ingredients compose: Tracking O(1),
concentration

√
T , regret

√
T , optimism

√
T , perturbation

√·.

Theorem (Degenne, Koolen, and Ménard 2019)

The sample complexity is at most

Eµ[τ ] ≤ T ∗(µ) ln
1

δ
+ small

Theorem (Degenne, Shao, and Koolen 2020)

The regret is at most

RT (µ) ≤ V ∗(µ) lnT + small

Wouter Koolen Bandits, Games, Explore/Exploit Noberwolfach 30 / 53



Iterative Saddle-Point Methods

Proof ideas (cheating with optimism)

As long as we do not stop, t < τ ,

ln
1

δ
≈ β(t, δ) ≥ inf

λ∈Alt(µ)

K∑

k=1

Nk
t d(µk , λk) (stop rule)

≈ inf
λ∈Alt(µ)

t∑

s=1

K∑

k=1

wk
s d(µk , λk) (tracking)

≥
t∑

s=1

K∑

k=1

wk
s Eλ∼qs d(µk , λk)− Rλ

t (regret λ)

≥ max
k

t∑

s=1

Eλ∼qs d(µk , λk)− Rλ
t − Rk

t (regret k)

≥ t inf
q∈P(Alt(µ))

max
k

Eλ∼q d(µk , λk)− O(
√
t)

Find maximal t to get bound on τ .
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Experiments Best Arm Identification

Pure Exploration Experiment: Minimum Threshold

Minimum Threshold for Gaussian bandit model µ = (0.5, 0.6) with
threshold γ = 0.6, w∗ = (1, 0). Note the excessive sample complexity of
T-C/T-D. δ = 10−10.

D-C D-D M-C M-D T-C T-D O-C O-D RR opt
0

5.0×103

1.0×104

1.5×104

2.0×104

lower bd
practical
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Experiments Regret Minimisation

Regret Experiment: Categorised Bandit
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Experiments Regret Minimisation

Regret Experiment: Sparse Bandit
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Conclusion

Conclusion

Game equilibrium based techniques for matching instance dependent
lower bounds for structured stochastic bandits.

Run-time determined by Best Response oracle for your structure.
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Conclusion

Topics Skipped

Pure Exploration problems with multiple correct answers (incl. ε-Best
Arm) [Degenne and Koolen, 2019] ⇐ surprisingly subtle.

Optimal algorithms based on variations of Thompson Sampling
I Top-Two for Best Arm [Russo, 2016]
I Murphy Sampling for Minimum Threshold [Kaufmann et al., 2018].
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Conclusion

Where to Next?

Fine tuning

What about “lower-order” terms not scaling with lnT or ln 1
δ

[Simchowitz et al., 2017]?

Is minigame interaction “easy data”? OMD/OFTRL? MetaGrad [van
Erven and Koolen, 2016]?

Pure Exploration Beyond Best Arm (understand sparsity patterns).
Currently working on game trees. RL on the horzon.

Minigames for other problems?

Fixed Budget? Simple Regret?

Thank you!
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Noise Free Case

Noise-free result

Let Bkn be regret of full information online learning (AdaHedge) w. linear
losses on the simplex.

Theorem

Consider running our algorithm until infλ∈Λ

∑n
t=1

∑
k w

k
t d(µk , λk) ≥ lnT .

The iterates w1, . . . ,wn satisfy

Rn =
n∑

t=1

〈wt ,∆〉 ≤ VT +
Bkn
D∗

Note

Can get A1, . . . ,An using tracking (at cost ∆max lnK )

Standard choice gives n = O(lnT ) and
Bkn = O(

√
n) = O(

√
lnT ) = o(lnT ).
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Noise Free Case

Regret analysis

Given moves wt ∈ 4K and λt ∈ Λ, we instantiate a k-learner for the gain
function

gt(w̃) = 〈wt ,∆〉
∑

k

w̃k d(µk , λkt )

∆k

to provide regret bound

n∑

t=1

gt(w̃t) ≥ max
k

n∑

t=1

〈wt ,∆〉
d(µk , λkt )

∆k
− Bkn . (1)
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Noise Free Case

Regret analysis (ctd)

Given w̃t from the k-learner, we define player and opponent by

wk
t ∝ w̃k

t /∆k (2)

λt ∈ argmin
λ∈Λ

∑

k

wk
t d(µk , λk) (3)

to obtain

n∑

t=1

gt(w̃t) =
n∑

t=1

〈wt ,∆〉
∑

k

w̃k
t

d(µk , λkt )

∆k

(2)
=

n∑

t=1

∑

k

wk
t d(µk , λkt )

(3)
=

n∑

t=1

inf
λ∈Λ

∑

k

wk
t d(µk , λk) ≤ inf

λ∈Λ

n∑

t=1

∑

k

wk
t d(µk , λk)

(4)
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Noise Free Case

Regret analysis (ctd)

The stopping condition plus regret bounds (1) and (4) result in

lnT + Bkn ≥ max
k

n∑

t=1

〈wt ,∆〉
d(µk , λkt )

∆k
= Rn max

k

n∑

t=1

〈wt ,∆〉
Rn

d(µk , λkt )

∆k

≥ Rn inf
q∈4(Λ)

max
k

Eλ∼q
[
d(µk , λk)

]

∆k
= RnD

∗

where we abbreviated Rn =
∑n

t=1 〈wt ,∆〉. All in all we showed

Rn ≤ VT +
Bkn
D∗
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The Real Deal

Scaling up

Can use what we developed so far to compute oracle weights every round
(OSSB). Efficient for every bandit structure for which best response is
tractable.

But we can do much better!
Idea:

Run only one iteration every round.

Deal with unknown µ.

Exploitation.

some issues . . .
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The Real Deal

First Issue

Actually, ∆∗ = 0. And we were dividing by it all over the place.

Idea: run on ∆k
ε = max

{
∆k , ε

}
.

Theorem

lim
ε→0

V ε
T = VT

In several cases we can show perturbed value is V ε
T ≤ VT +

√
2εVT .
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The Real Deal

One iteration every round

Replace µ by estimate µ̂t .

Add optimism to force exploration.
We introduce upper confidence bounds on the ratio KL/gap.

UCBk
s = sup

ξ∈Cks−1

d(ξ, λkt )

max
{
εs , 1{k 6= js}

[
µ+
s−1 − ξ

]}

where Cks−1 =


µ̂ks−1 ±

√√√√ ln(njss−1,N
k
s−1)

Nk
s−1


 .

We do not know identity of the best arm, and hence Λ (domain of
λ) Estimate best arm, and run K independent interactions.
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The Real Deal

Algorithm

1: Pull each arm once and get µ̂K .
2: for t = K + 1, · · · ,T do
3: if ∃i ∈ [K ], minλ∈¬i

∑
k N

k
t−1d(µ̂k

t−1, λ
k) > f (t − 1) then

4: At = i (if there are several suitable i , pull any one of them)
5: else

6: µ+
t−1, jt = (arg) maxj∈[K ] µ̂

j
t−1 +

√
ln(njt−1,N

j
t−1)

N j
t−1

.

7: get w̃t from learner Ak
jt

, compute wk
t ∝ w̃k

t /∆̃k .
8: compute best response λt .

9: Compute UCBk
t = maxξ∈[µ̂k

t−1−...,µ̂k
t−1+...]

[
d(ξ,λk

t )

max{εt ,1{k 6=jt}[µ+
t−1−ξ]}

]

10: At = argmink∈[K ] N
k
t−1 −

∑t
s=1 w

k
s . . Tracking

11: end if
12: Access XAt

t , update µ̂t and Nt

13: end for
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Pictures
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