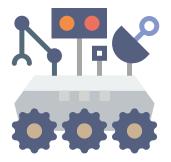
Exploration and Exploitation in Structured Stochastic Bandits



Wouter M. Koolen

Collaborators

Rémy Degenne Han Shao (邵涵)

Emilie Kaufmann

Pierre Ménard Aurélien Garivier

Outline

Ideas

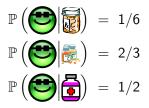
- 2 Problem Settings
- 3 Lower Bounds
- 4 Algorithms
- 5 Iterative Saddle-Point Methods
- 6 Experiments

7 Conclusion

Stochastic Bandit

Stochastic Bandit

Model (Unknown)



Idea

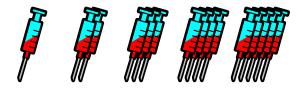
Stochastic Bandit Interaction

Time

Wouter Koolen

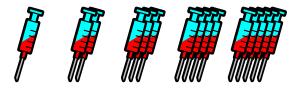
- Best Arm Identification: use trial to cure population
- Reward Maximisation: cure patients in trial

Structured Stochastic Bandit

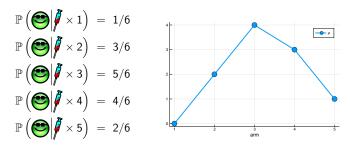


Idea

Structured Stochastic Bandit

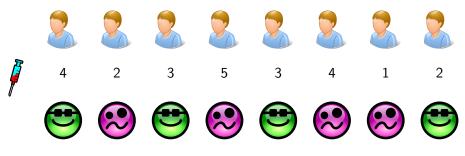


Model (Unknown)



Idea

Structured Stochastic Bandit Interaction



We will develop **efficient structure-adaptive** learning algorithms for **Best Arm Identification** and **Reward Maximisation**.

Information-theoretic lower bounds will tell us that the complexity of each task is characterised by a certain two-player zero-sum game.

We will base our learning algorithms on iterative saddle point solvers for this game.

Why are we doing this?

Structure interesting in practise

- Unimodal [Combes and Proutiere, 2014]
- Lipschitz [Magureanu, Combes, and Proutière, 2014]
- Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]
- Linear [Lattimore and Szepesvári, 2017]
- Sparse [Kwon, Perchet, and Vernade, 2017]
- Categorised [Jedor, Perchet, and Louedec, 2019]
- Combinatorial, duelling, ...

Why are we doing this?

Structure interesting in practise

- Unimodal [Combes and Proutiere, 2014]
- Lipschitz [Magureanu, Combes, and Proutière, 2014]
- Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]
- Linear [Lattimore and Szepesvári, 2017]
- Sparse [Kwon, Perchet, and Vernade, 2017]
- Categorised [Jedor, Perchet, and Louedec, 2019]
- Combinatorial, duelling, ...

Sub-modules (training ground) for

- reinforcement learning
- simulator-based planning
- environments with selfish or adversarial agents

Outline

1) Ideas

2 Problem Settings

- 3 Lower Bounds
- 4 Algorithms
- 5 Iterative Saddle-Point Methods
- 6 Experiments

7 Conclusion

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model

A K-armed bandit model is a tuple $\mu = (\mu_1, \dots, \mu_K)$.

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model

A K-armed bandit model is a tuple $\mu = (\mu_1, \dots, \mu_K)$.

Learning Target The best arm for μ is

$$i^*(\mu) \coloneqq \operatorname*{argmax}_i \mu_i$$

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model

A K-armed bandit model is a tuple $\mu = (\mu_1, \dots, \mu_K)$.

Learning Target

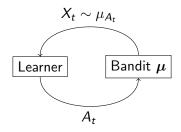
The best arm for μ is

$$i^*(oldsymbol{\mu}) \mathrel{centcolor}= rgmax_i \mu_i$$

Structure

Set of possible bandit models $\mathcal{M} \subseteq \mathbb{R}^{K}$.

Interaction



Best Arm Identification: Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Best Arm Identification: Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{I} \in [K]$.

$$\mathsf{Realisation} \,\, \mathsf{of} \,\, \mathsf{interaction} \colon \, \mathcal{H} \coloneqq \Big(\mathsf{A}_1, \mathsf{X}_1, \ldots, \mathsf{A}_\tau, \mathsf{X}_\tau, \widehat{\mathsf{I}} \Big).$$

Best Arm Identification: Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{I} \in [K]$.

Realisation of interaction:
$$\mathcal{H}\coloneqq \left(\mathsf{A}_1, \mathsf{X}_1, \ldots, \mathsf{A}_{ au}, \mathsf{X}_{ au}, \hat{I}
ight).$$

Two objectives: sample efficiency τ and correctness $\hat{l} = i^*(\mu)$.

Best Arm Identification Goal: PAC learning

Definition

Fix small confidence $\delta \in (0,1)$. A strategy is δ -correct if

 $\mathbb{P}_{oldsymbol{\mu}}ig(\hat{l}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta \qquad ext{ for every bandit model } oldsymbol{\mu}\in\mathcal{M}.$

Best Arm Identification Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

 $\mathbb{P}_{oldsymbol{\mu}}ig(\hat{l}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta \qquad ext{ for every bandit model } oldsymbol{\mu}\in\mathcal{M}.$

Goal: minimise sample complexity $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.

Best Arm Identification Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

 $\mathbb{P}_{oldsymbol{\mu}}ig(\hat{l}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta \qquad ext{ for every bandit model } oldsymbol{\mu}\in\mathcal{M}.$

Goal: minimise sample complexity $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.

Hope

Efficient δ -correct algorithm with instance-optimal sample complexity

$$\mathbb{E}_{\mu}[\tau] \preceq \Box_{\mu} \ln \frac{1}{\delta}$$
 for all $\mu \in \mathcal{M}$.

Regret Minimisation: Strategy and Goal

In round $t \leq T$ sampling rule picks $A_t \in [K]$, and sees $X_t \sim \mu_{A_t}$.

Regret Minimisation: Strategy and Goal

In round $t \leq T$ sampling rule picks $A_t \in [K]$, and sees $X_t \sim \mu_{A_t}$.

Realisation of interaction: $\mathcal{H} \coloneqq (A_1, X_1, \dots, A_T, X_T)$.

Definition

The objective is

$$\mathsf{R}_{\mathcal{T}}(\mu) \coloneqq \sum_{k=1}^{K} \mathbb{E}[N_{\mathcal{T}}^{k}] \Delta^{k}$$

where the sub-optimality gaps are given by $\Delta^k = \mu^* - \mu^k$.

Regret Minimisation: Strategy and Goal

In round $t \leq T$ sampling rule picks $A_t \in [K]$, and sees $X_t \sim \mu_{A_t}$.

Realisation of interaction: $\mathcal{H} \coloneqq (A_1, X_1, \dots, A_T, X_T)$.

Definition

The objective is

$$\mathsf{R}_{\mathcal{T}}(\mu) \coloneqq \sum_{k=1}^{K} \mathbb{E}[N_{\mathcal{T}}^{k}] \Delta^{k}$$

where the sub-optimality gaps are given by $\Delta^k = \mu^* - \mu^k$.

Hope

Efficient algorithm with instance-optimal regret

$$\mathsf{R}_{\mathcal{T}}(\mu) \ \preceq \ \Box_{\mu} \ln \mathcal{T} \qquad ext{for all } \mu \in \mathcal{M}.$$

Outline

1 Ideas

- 2 Problem Settings
- 3 Lower Bounds
 - 4 Algorithms
 - 5 Iterative Saddle-Point Methods
 - 6 Experiments

7 Conclusion

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Define the **alternative** to μ by $Alt(\mu) := \{\lambda \in \mathcal{M} | i^*(\lambda) \neq i^*(\mu) \}$.

Instance-Dependent Sample Complexity Lower Bound

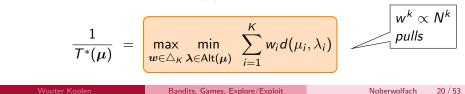
Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Define the **alternative** to μ by $Alt(\mu) := \{\lambda \in \mathcal{M} | i^*(\lambda) \neq i^*(\mu) \}.$

Theorem (Castro 2014, Garivier and Kaufmann 2016) Fix a δ -correct strategy. Then for every bandit model $\mu \in \mathcal{M}$

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by



Example

K = 5 Bernoulli arms, $\mu = (0.4, 0.3, 0.2, 0.1, 0.0)$.

$$T^*(\mu) = 200.4$$
 $w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At confidence $\delta = 0.05$ we have $\ln \frac{1}{\delta} = 3.0$ and hence $\mathbb{E}_{\mu}[\tau] \ge 601.2$.

Regret Minimisation

Instance-Dependent Regret Lower Bound

Theorem (Graves and Lai 1997)

Any asymptotically consistent algorithm for structure $\mathcal M$ must incur on each $\mu\in\mathcal M$ regret at least

$$\mathsf{R}_{\mathcal{T}}(oldsymbol{\mu}) \, \succeq \, V(oldsymbol{\mu}) \, \mathsf{In} \; \mathcal{T}$$

where the characteristic regret rate is given by

$$\frac{1}{V(\mu)} = \left[\max_{\tilde{w} \in \triangle} \inf_{\lambda \in \mathsf{Alt}(\mu)} \sum_{k} \tilde{w}^{k} \frac{d(\mu^{k}, \lambda^{k})}{\Delta^{k}} \right]$$

$$ilde{w}^k \propto N^k \Delta^k$$
regret

Outline

Ideas

- 2 Problem Settings
- 3 Lower Bounds
- 4 Algorithms
 - 5 Iterative Saddle-Point Methods
 - 6 Experiments

7 Conclusion

Lower Bounds Inspire Strategies

Recall sample complexity/regret lower bound governed by

Lower Bounds Inspire Strategies

Recall sample complexity/regret lower bound governed by

$$\underbrace{\max_{\boldsymbol{w} \in \Delta_{\mathcal{K}}} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{\mathcal{K}} w_i d(\mu_i, \lambda_i)}_{i \in \Delta_{\mathcal{K}}} \text{ or } \max_{\tilde{\boldsymbol{w}} \in \Delta_{\mathcal{X}} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{k} \tilde{w}^k \frac{d(\mu^k, \lambda^k)}{\Delta^k}$$

Matching algorithms **must** sample with **argmax** (**oracle**) proportions.

Lower Bounds Inspire Strategies

Earlier work [Combes et al., 2017, Garivier and Kaufmann, 2016] At each time step

- compute plug-in oracle solution $w^*(\hat{\mu}_t)$ or $\tilde{w}^*(\hat{\mu}_t)$.
- sample arm A_t to track that solution
- force exploration to ensure $\hat{\mu}_t \rightarrow \mu$.

Lower Bounds Inspire Strategies

Earlier work [Combes et al., 2017, Garivier and Kaufmann, 2016] At each time step

- compute plug-in oracle solution $w^*(\hat{\mu}_t)$ or $\tilde{w}^*(\hat{\mu}_t)$.
- sample arm A_t to track that solution
- force exploration to ensure $\hat{\mu}_t \rightarrow \mu$.

Coming up

- Iteratively solve lower bounds by full information online learning.
- Use iterates to drive sampling rule.
- Add optimism to induce exploration.
- Cap gap estimates $\hat{\Delta}_t$ from below to reduce estimation variance
- **Compose** regret bound from saddle-point regret + estimation regret

1) Ideas

- 2 Problem Settings
- 3 Lower Bounds
- 4 Algorithms
- 5 Iterative Saddle-Point Methods
 - 6 Experiments

7 Conclusion

Interleaved Iterative Solution

Standard technique: can approximately solve saddle point problems like

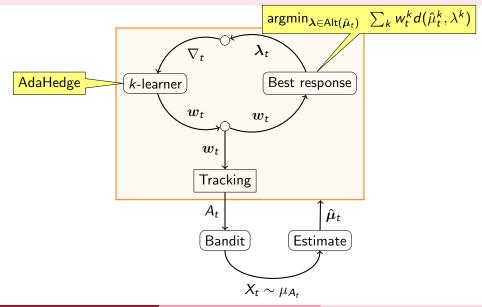
$$\underbrace{\max_{\boldsymbol{w}\in \Delta_{K}}\min_{\boldsymbol{\lambda}\in\mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i}d(\mu_{i},\lambda_{i})}_{i\in\mathbb{N}} \text{ or } \underbrace{\max_{\tilde{\boldsymbol{w}}\in \Delta}\inf_{\boldsymbol{\lambda}\in\mathsf{Alt}(\boldsymbol{\mu})} \sum_{k} \tilde{w}^{k}\frac{d(\mu^{k},\lambda^{k})}{\Delta^{k}}}_{i\in\mathbb{N}}$$

iteratively using two online learners.

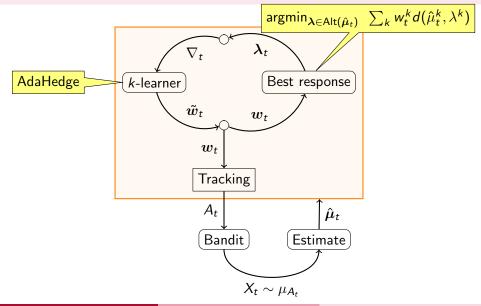
Main pipeline [Degenne, Koolen, and Ménard, 2019]:

- Plug-in estimate $\hat{\mu}_t$ (so problem is shifting).
- Advance the saddle point solver by **one** iteration for every bandit interaction.
- Add optimism to gradients to induce exploration

Sampling Rule for Best Arm Identification



Sampling Rule for Regret Minimisation



Compositionality

The "overheads" of the ingredients **compose**: Tracking O(1), concentration \sqrt{T} , regret \sqrt{T} , optimism \sqrt{T} , perturbation $\sqrt{\cdot}$.

Theorem (Degenne, Koolen, and Ménard 2019) The sample complexity is at most

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \le \ extsf{T}^*(oldsymbol{\mu}) \ extsf{ln} \ rac{1}{\delta} + extsf{small}$$

Theorem (Degenne, Shao, and Koolen 2020) The regret is at most

$$\mathsf{R}_{\mathcal{T}}(oldsymbol{\mu}) \ \le \ V^*(oldsymbol{\mu}) \ \mathsf{In} \ T + \mathit{small}$$

Proof ideas (cheating with optimism)

As long as we do not stop, $t < \tau$,

$$\begin{aligned} \ln \frac{1}{\delta} &\approx \beta(t, \delta) \geq \inf_{\lambda \in \mathsf{Alt}(\mu)} \sum_{k=1}^{K} N_t^k d(\mu^k, \lambda^k) & \text{(stop rule)} \\ &\approx \inf_{\lambda \in \mathsf{Alt}(\mu)} \sum_{s=1}^t \sum_{k=1}^K w_s^k d(\mu^k, \lambda^k) & \text{(tracking)} \\ &\geq \sum_{s=1}^t \sum_{k=1}^K w_s^k \mathbb{E}_{\lambda \sim q_s} d(\mu^k, \lambda^k) - R_t^\lambda & \text{(regret } \lambda) \\ &\geq \max_k \sum_{s=1}^t \mathbb{E}_{\lambda \sim q_s} d(\mu^k, \lambda^k) - R_t^\lambda - R_t^k & \text{(regret } k) \\ &\geq t \inf_{q \in \mathcal{P}(\mathsf{Alt}(\mu))} \max_k \mathbb{E}_{\lambda \sim q} d(\mu^k, \lambda^k) - O(\sqrt{t}) \end{aligned}$$

Find maximal t to get bound on τ .

Wouter Koole

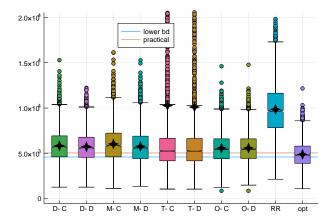
Ideas

- 2 Problem Settings
- 3 Lower Bounds
- 4 Algorithms
- 5 Iterative Saddle-Point Methods
- 6 Experiments

Conclusion

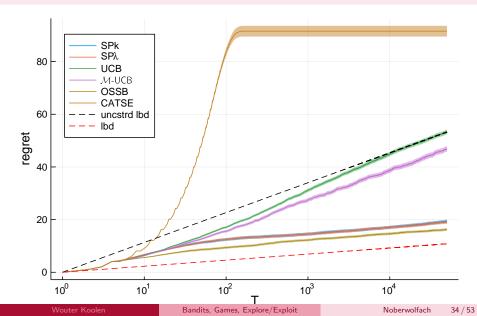
Pure Exploration Experiment: Minimum Threshold

Minimum Threshold for Gaussian bandit model $\mu = (0.5, 0.6)$ with threshold $\gamma = 0.6$, $w^* = (1, 0)$. Note the excessive sample complexity of T-C/T-D. $\delta = 10^{-10}$.

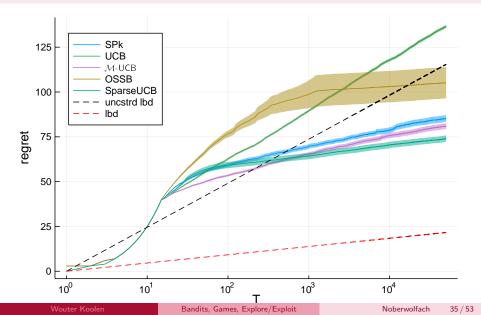


Regret Minimisation

Regret Experiment: Categorised Bandit



Regret Experiment: Sparse Bandit



1) Ideas

- 2 Problem Settings
- 3 Lower Bounds
- 4 Algorithms
- 5 Iterative Saddle-Point Methods
- 6 Experiments

Conclusion

Game equilibrium based techniques for matching **instance dependent lower bounds** for structured stochastic bandits.

Run-time determined by **Best Response oracle** for your structure.

Topics Skipped

- Optimal algorithms based on variations of Thompson Sampling
 - Top-Two for Best Arm [Russo, 2016]
 - Murphy Sampling for Minimum Threshold [Kaufmann et al., 2018].

Where to Next?

- Fine tuning
- What about "lower-order" terms not scaling with $\ln T$ or $\ln \frac{1}{\delta}$ [Simchowitz et al., 2017]?
- Is minigame interaction "easy data"? OMD/OFTRL? MetaGrad [van Erven and Koolen, 2016]?
- Pure Exploration Beyond Best Arm (understand sparsity patterns). Currently working on game trees. RL on the horzon.
- Minigames for other problems?
- Fixed Budget? Simple Regret?

Where to Next?

- Fine tuning
- What about "lower-order" terms not scaling with $\ln T$ or $\ln \frac{1}{\delta}$ [Simchowitz et al., 2017]?
- Is minigame interaction "easy data"? OMD/OFTRL? MetaGrad [van Erven and Koolen, 2016]?
- Pure Exploration Beyond Best Arm (understand sparsity patterns). Currently working on game trees. RL on the horzon.
- Minigames for other problems?
- Fixed Budget? Simple Regret?

Thank you!

- Noise Free Case
- 10 The Real Deal

8 Proof Ideas

Noise-free result

Let \mathcal{B}_n^k be regret of full information online learning (AdaHedge) w. linear losses on the simplex.

Theorem

Consider running our algorithm until $\inf_{\lambda \in \Lambda} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda^{k}) \geq \ln T$. The iterates w_{1}, \ldots, w_{n} satisfy

$$R_n = \sum_{t=1}^n \langle w_t, \Delta \rangle \leq V_T + \frac{\mathcal{B}_n^k}{D^*}$$

Note

- Can get A_1, \ldots, A_n using tracking (at cost $\Delta^{\max} \ln K$)
- Standard choice gives $n = O(\ln T)$ and $\mathcal{B}_n^k = O(\sqrt{n}) = O(\sqrt{\ln T}) = o(\ln T)$.

Regret analysis

Given moves $w_t \in riangle_K$ and $\lambda_t \in \Lambda$, we instantiate a *k*-learner for the gain function

$$g_t(\tilde{w}) = \langle w_t, \Delta \rangle \sum_k \tilde{w}^k \frac{d(\mu^k, \lambda_t^k)}{\Delta^k}$$

to provide regret bound

$$\sum_{t=1}^{n} g_t(\tilde{w}_t) \geq \max_k \sum_{t=1}^{n} \langle w_t, \Delta \rangle \frac{d(\mu^k, \lambda_t^k)}{\Delta^k} - \mathcal{B}_n^k.$$
(1)

Regret analysis (ctd)

Given $ilde{w}_t$ from the k-learner, we define player and opponent by

$$w_t^k \propto \tilde{w}_t^k / \Delta^k$$
 (2)
 $\lambda_t \in \operatorname{argmin}_{\lambda \in \Lambda} \sum_k w_t^k d(\mu^k, \lambda^k)$ (3)

to obtain

$$\sum_{t=1}^{n} g_{t}(\tilde{w}_{t}) = \sum_{t=1}^{n} \langle w_{t}, \Delta \rangle \sum_{k} \tilde{w}_{t}^{k} \frac{d(\mu^{k}, \lambda_{t}^{k})}{\Delta^{k}} \stackrel{(2)}{=} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda_{t}^{k})$$
$$\stackrel{(3)}{=} \sum_{t=1}^{n} \inf_{\lambda \in \Lambda} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda^{k}) \leq \inf_{\lambda \in \Lambda} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda^{k})$$
(4)

Regret analysis (ctd)

The stopping condition plus regret bounds (1) and (4) result in

$$\ln T + \mathcal{B}_{n}^{k} \geq \max_{k} \sum_{t=1}^{n} \langle w_{t}, \Delta \rangle \frac{d(\mu^{k}, \lambda_{t}^{k})}{\Delta^{k}} = R_{n} \max_{k} \sum_{t=1}^{n} \frac{\langle w_{t}, \Delta \rangle}{R_{n}} \frac{d(\mu^{k}, \lambda_{t}^{k})}{\Delta^{k}}$$
$$\geq R_{n} \inf_{q \in \Delta(\Lambda)} \max_{k} \frac{\mathbb{E}_{\lambda \sim q} \left[d(\mu^{k}, \lambda^{k}) \right]}{\Delta^{k}} = R_{n} D^{*}$$

where we abbreviated $R_n = \sum_{t=1}^n \langle w_t, \Delta \rangle$. All in all we showed

$$R_n \leq V_T + \frac{\mathcal{B}_n^k}{D^*}$$

8 Proof Ideas

Noise Free Case

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for **every** bandit structure for which best response is tractable.

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for **every** bandit structure for which best response is tractable.

But we can do much better!

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for **every** bandit structure for which best response is tractable.

But we can do much better! Idea:

- Run only one iteration every round.
- Deal with unknown μ .
- Exploitation.

some issues . . .

First Issue

Actually, $\Delta^* = 0$. And we were dividing by it all over the place.

First Issue

Actually, $\Delta^* = 0$. And we were dividing by it all over the place.

Idea: run on $\Delta_{\epsilon}^{k} = \max{\{\Delta^{k}, \epsilon\}}.$

Theorem

$$\lim_{\epsilon \to 0} V_T^{\epsilon} = V_T$$

In several cases we can show perturbed value is $V_T^{\epsilon} \leq V_T + \sqrt{2\epsilon V_T}$.

One iteration every round

- Replace μ by estimate $\hat{\mu}_t$.
- Add optimism to force exploration.
 We introduce upper confidence bounds on the ratio KL/gap.

$$\begin{aligned} \text{UCB}_{s}^{k} &= \sup_{\xi \in \mathcal{C}_{s-1}^{k}} \frac{d(\xi, \lambda_{t}^{k})}{\max\left\{\epsilon_{s}, 1\{k \neq j_{s}\}\left[\mu_{s-1}^{+} - \xi\right]\right\}} \end{aligned}$$

where $\mathcal{C}_{s-1}^{k} &= \left[\hat{\mu}_{s-1}^{k} \pm \sqrt{\frac{\overline{\ln}(n_{s-1}^{j_{s}}, N_{s-1}^{k})}{N_{s-1}^{k}}}\right]. \end{aligned}$

We do not know identity of the best arm, and hence Λ (domain of λ) Estimate best arm, and run K independent interactions.

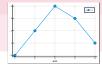
Algorithm

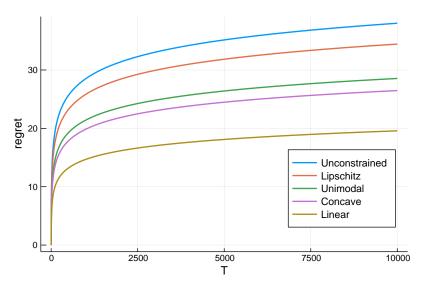
1: Pull each arm once and get
$$\hat{\mu}_{K}$$
.
2: for $t = K + 1, \dots, T$ do
3: if $\exists i \in [K]$, $\min_{\lambda \in \neg i} \sum_{k} N_{t-1}^{k} d(\hat{\mu}_{t-1}^{k}, \lambda^{k}) > f(t-1)$ then
4: $A_{t} = i$ (if there are several suitable *i*, pull any one of them)
5: else
6: $\mu_{t-1}^{+}, j_{t} = (\arg) \max_{j \in [K]} \hat{\mu}_{t-1}^{j} + \sqrt{\frac{\ln(n_{t-1}^{j}, N_{t-1}^{j})}{N_{t-1}^{j}}}$.
7: get \tilde{w}_{t} from learner $\mathcal{A}_{j_{t}}^{k}$, compute $w_{t}^{k} \propto \tilde{w}_{t}^{k} / \tilde{\Delta}^{k}$.
8: compute best response λ_{t} .
9: Compute UCB_{t}^{k} = \max_{\xi \in [\hat{\mu}_{t-1}^{k} - \dots, \hat{\mu}_{t-1}^{k} + \dots]} \left[\frac{d(\xi, \lambda_{t}^{k})}{\max_{\xi \in t, 1\{k \neq j_{t}\} | \mu_{t-1}^{k} - \xi]\}} \right]
10: $A_{t} = \operatorname{argmin}_{k \in [K]} N_{t-1}^{k} - \sum_{s=1}^{t} w_{s}^{k}$. \triangleright Tracking
11: end if
12: Access $X_{t}^{A_{t}}$, update $\hat{\mu}_{t}$ and N_{t}

8 Proof Ideas

- Noise Free Case
- 10 The Real Deal

Desired behaviour





Picture

Illustration

