Exploration and Exploitation in Structured Stochastic Bandits

Wouter M. Koolen

Collaborators

Rémy Degenne Han Shao (邵涵)

Emilie Kaufmann

Part I

Saddle Points Intermezzo

Objective function

g(x, y)

convex in x, concave in y.

Games

Objective function

g(x, y)

convex in x, concave in y. The game **value** is

$$V^* = \inf_{x} \sup_{y} g(x, y) = \sup_{y} \inf_{x} g(x, y).$$

Games

Objective function

g(x, y)

convex in x, concave in y. The game **value** is

$$V^* = \inf_{x} \sup_{y} g(x, y) = \sup_{y} \inf_{x} g(x, y).$$

Definition

An ϵ -saddle point (\bar{x}, \bar{y}) satisfies

$$V^* - \epsilon \leq \inf_{x} g(x, \overline{y}) \leq V^* \leq \sup_{y} g(\overline{x}, y) \leq V^* + \epsilon.$$

Question: how to find ϵ -saddle point?

Wouter Koolen

Idea [Freund and Schapire, 1999]: play a regret minimisation algorithm for x against one for y.

- Players play x_t and y_t .
- Players see loss functions

$$x \mapsto +g(x, y_t),$$

 $y \mapsto -g(x_t, y).$

Output pair of **iterate averages**: $\left(\frac{1}{T}\sum_{t=1}^{T} x_t, \frac{1}{T}\sum_{t=1}^{T} y_t\right)$.

Saddle point

Assume the players have regret (bounds) R_T^x and R_T^y , i.e.

$$\sum_{t=1}^{T} +g(x_t, y_t) - \inf_{x} \sum_{t=1}^{T} +g(x, y_t) \leq R_T^x$$
$$\sum_{t=1}^{T} -g(x_t, y_t) - \inf_{y} \sum_{t=1}^{T} -g(x_t, y) \leq R_T^y$$

Theorem

The iterate averages $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{y}_T = \frac{1}{T} \sum_{t=1}^T y_t$ form an $\frac{R_T^x + R_T^y}{T}$ -saddle point.

Analysis

 $V^* = \inf_{x} \sup_{y} g(x, y)$ $\leq \sup g(\bar{x}_T, y)$ (suboptimal choice \bar{x}_T) $\leq \sup_{y} \frac{1}{T} \sum_{t=1}^{T} g(x_t, y)$ (convexity in 1st argument) $\leq \frac{1}{T}\sum_{t=1}^{T}g(x_t, y_t) + \frac{R_T^y}{T}$ (y player regret guarantee) $\leq \inf_{x} \frac{1}{T} \sum_{t=1}^{T} g(x, y_t) + \frac{R_T^x + R_T^y}{T}$ (x player regret guarantee) $\leq \inf_{\mathbf{x}} g(\mathbf{x}, \bar{\mathbf{y}}_T) + \frac{R_T^{\mathbf{x}} + R_T^{\mathbf{y}}}{T}$ (concavity in 2nd argument) $\leq \inf_{x} \sup_{y} g(x, y) + \frac{R_T^x + R_T^y}{T}$ (suboptimal choice \bar{y}_T) $= V^* + \frac{R_T^x + R_T^y}{\tau}$

For either player, we can use e.g.

• OGD, Hedge, FTRL, FTPL, ... \sqrt{T} regret $\Rightarrow \epsilon = 1/\sqrt{T}$

For either player, we can use e.g.

• OGD, Hedge, FTRL, FTPL, ... \sqrt{T} regret $\Rightarrow \epsilon = 1/\sqrt{T}$

while the second player can ensure negative regret with

- Be-The-Leader
- Best Response no memory

For either player, we can use e.g.

• OGD, Hedge, FTRL, FTPL, ... \sqrt{T} regret $\Rightarrow \epsilon = 1/\sqrt{T}$

while the second player can ensure negative regret with

- Be-The-Leader
- Best Response no memory

Many more options. Optimism [Rakhlin and Sridharan, 2013], principled path to Nesterov acceleration [Wang and Abernethy, 2018]

Stochastic Bandit

Stochastic Bandit

Model (Unknown)

Stochastic Bandit Interaction

Time

- O Pure Exploration: use trial to cure population
- Reward Maximisation: cure patients in trial

Structured Stochastic Bandit

Structured Stochastic Bandit

Model (Unknown)

ntroduction to the Tutoria

Structured Stochastic Bandit Interaction

What This Tutorial is About

We will develop **efficient learning algorithms** for **Pure Exploration** and **Reward Maximisation**.

Information-theoretic lower bounds will tell us that the complexity of each task is characterised by a certain **two-player zero-sum game**.

We will base our learning algorithms on iterative **saddle point solvers** for this game.

Part II

Pure Exploration / Active Testing

Outline

2 Introduction

3 Model

4 Lower Bound

- 5 Pure Exploration Algorithms
- 6 A Games Perspective on TaS
- 7 Experiments

8 Conclusion

Topic: Pure Exploration

Topic: Pure Exploration

Main scientific questions

- Efficient systems
- Sample complexity as function of query and environment

Outline

2 Introduction

3 Model

4 Lower Bound

- 5 Pure Exploration Algorithms
- 6 A Games Perspective on TaS
- 7 Experiments

8 Conclusion

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model

A K-armed bandit model is a tuple $\mu = (\mu_1, \dots, \mu_K)$.

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model

A K-armed bandit model is a tuple $\mu = (\mu_1, \dots, \mu_K)$.

Query

Set of possible environments $\mathcal{M} \subseteq \mathbb{R}^{K}$. Set of possible answers \mathcal{I} . **Correct answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Mode

Examples

Problem nameBestPossible answers \mathcal{I} [K]Correct answer $i^*(\mu)$ argm

Best Arm [K]argmax_k μ_k Minimum Threshold {lo, hi} lo if min_k $\mu_k < \gamma$ hi if min_k $\mu_k > \gamma$

Mode

Examples

Problem nameBest ArmPossible answers \mathcal{I} [K]Correct answer $i^*(\mu)$ $\operatorname{argmax}_k \mu_k$

Minimum Threshold {lo, hi} lo if min_k $\mu_k < \gamma$ hi if min_k $\mu_k > \gamma$

- Top-*M*
- Combinatorial Best Arm
- Maximum Profit
- Unit Ball

- Thresholding Bandit
- Pure Nash equilibrium
- Game Tree Search
- . . .

Wouter Koolen

Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{l} \in \mathcal{I}$.

Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{l} \in \mathcal{I}$.

$$\mathsf{Realisation} \,\, \mathsf{of} \,\, \mathsf{interaction} \colon \, \mathcal{H} \coloneqq \Big(\mathsf{A}_1, \mathsf{X}_1, \ldots, \mathsf{A}_\tau, \mathsf{X}_\tau, \widehat{\mathsf{I}} \Big).$$

Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_t \in [K]$. See $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{l} \in \mathcal{I}$.

Realisation of interaction:
$$\mathcal{H}\coloneqq \left(\mathsf{A}_1, \mathsf{X}_1, \ldots, \mathsf{A}_{ au}, \mathsf{X}_{ au}, \hat{\mathit{I}}
ight).$$

Two objectives: sample efficiency τ and correctness $\hat{l} = i^*(\mu)$.

Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

$$\mathbb{P}_{oldsymbol{\mu}}ig(\hat{l}
eq i^*(oldsymbol{\mu})ig)\ \leq\ \delta$$
 for every bandit model $oldsymbol{\mu}\in\mathcal{M}.$

Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

$$\mathbb{P}_{oldsymbol{\mu}}ig(\hat{m{l}}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta$$
 for every bandit model $oldsymbol{\mu}\in\mathcal{M}.$

Goal: minimise sample complexity $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.
Goal: PAC learning

Definition

Fix small confidence $\delta \in (0, 1)$. A strategy is δ -correct if

$$\mathbb{P}_{oldsymbol{\mu}}ig(\hat{m{l}}
eq i^*(oldsymbol{\mu})ig) \ \leq \ \delta$$
 for every bandit model $oldsymbol{\mu}\in\mathcal{M}.$

Goal: minimise sample complexity $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.

Not in this talk: Fixed Budget.

Outline

2 Introduction

3 Model

4 Lower Bound

- 5 Pure Exploration Algorithms
- 6 A Games Perspective on TaS
- 7 Experiments

8 Conclusion

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Define the **alternative** to answer $i \in \mathcal{I}$ by $\neg i \coloneqq \{\lambda \in \mathcal{M} | i^*(\lambda) \neq i\}$.

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Define the **alternative** to answer $i \in \mathcal{I}$ by $\neg i \coloneqq \{\lambda \in \mathcal{M} | i^*(\lambda) \neq i\}$.

Theorem (Castro 2014, Garivier and Kaufmann 2016) Fix a δ -correct strategy. Then for every bandit model $\mu \in \mathcal{M}$

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ {\mathcal T}^*(oldsymbol{\mu}) \, \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$rac{1}{\mathcal{T}^*(oldsymbol{\mu})} = \max_{oldsymbol{w}\in riangle_K} \min_{oldsymbol{\lambda}\in
eg i^*(oldsymbol{\mu})} \sum_{i=1}^K w_i d(\mu_i,\lambda_i).$$

Example

Best Arm identification: $i^*(\mu) = \operatorname{argmax}_i \mu_i$. K = 5 Bernoulli arms, $\mu = (0.4, 0.3, 0.2, 0.1, 0.0)$.

$$T^*(\mu) = 200.4$$
 $w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At $\delta = 0.05$, the time gets multiplied by $\ln \frac{1}{\delta} = 3.0$.

Outline

2 Introduction

3 Model

4 Lower Bound

5 Pure Exploration Algorithms

6 A Games Perspective on TaS

7 Experiments

8 Conclusion

Pure Exploration Algorithms

Recall, a strategy is defined by

- Stopping rule
- Recommendation rule
- Sampling rule

Stopping and Recommendation Rules

Quantify evidence for $\{i^*(\mu) = i^*(\hat{\mu}_t)\}$ vs alternative $\{i^*(\mu) \neq i^*(\hat{\mu}_t)\}$.

Stopping and Recommendation Rules

Quantify evidence for $\{i^*(\mu) = i^*(\hat{\mu}_t)\}$ vs alternative $\{i^*(\mu) \neq i^*(\hat{\mu}_t)\}$. Definition

The extended GLR statistic is defined as

$$\hat{\Lambda}_t = \inf_{\lambda \in \neg i^*(\hat{\mu}(t))} \sum_{a=1}^K N_a(t) d\left(\hat{\mu}_a(t), \lambda_a\right).$$

Stopping and Recommendation Rules

Quantify evidence for $\{i^*(\mu) = i^*(\hat{\mu}_t)\}$ vs alternative $\{i^*(\mu) \neq i^*(\hat{\mu}_t)\}$. Definition

The extended GLR statistic is defined as

$$\hat{\Lambda}_t = \inf_{\lambda \in \neg i^*(\hat{\mu}(t))} \sum_{a=1}^{K} N_a(t) d\left(\hat{\mu}_a(t), \lambda_a\right).$$

Proposal: stop when

$$\hat{\Lambda}_t \geq \beta(t, \delta) \coloneqq \ln \frac{1}{\delta} + K \ln \ln t + K \ln \ln \frac{1}{\delta}$$

and recommend $\hat{l} = i^*(\hat{\mu}_t)$.

Theorem (Kaufmann and Koolen 2018)

The above stopping and recommendation rules, combined with any sampling rule give a δ -correct algorithm.

Wouter Kooler

Bandits, Games, Explore/Exploit

WLT2 31/83

Operationalisation of the Oracle Weights

Recall sample complexity lower bound governed by

$$\max_{\boldsymbol{w} \in \triangle_{K}} \min_{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d(\mu_{i}, \lambda_{i})$$

Operationalisation of the Oracle Weights

Recall sample complexity lower bound governed by

$$\max_{\boldsymbol{w} \in \triangle_{\kappa}} \min_{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{\kappa} w_{i} d(\mu_{i}, \lambda_{i})$$

Any matching algorithm must sample with optimal (oracle) proportions

$$m{w}^*(m{\mu}) = rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in
eg i^*(m{\mu})} \sum_{i=1}^K w_i d(\mu_i, \lambda_i)$$

Idea: draw $A_t \sim w^*(\hat{\mu}(t))$.

Idea: draw $A_t \sim w^*(\hat{\mu}(t)).$

Track-and-Stop [Garivier and Kaufmann, 2016]

- Ensure $\hat{\mu}(t)
 ightarrow \mu$ by forced exploration
- ullet assuming w^* is continuous, this ensures $w^*(\hat{\mu}_t) o w^*(\mu)$.
- Draw arm with $N_i(t)$ below $\sum_{s=1}^t w_i^*(\hat{\mu}_s)$ (C-tracking)

• hence
$$N_i(t)/t o w_i^*(oldsymbol{\mu})$$

Inherit δ -correctness from GLR stopping/recommendation rule.

Idea: draw $A_t \sim w^*(\hat{\mu}(t)).$

Track-and-Stop [Garivier and Kaufmann, 2016]

- Ensure $\hat{\mu}(t)
 ightarrow \mu$ by forced exploration
- ullet assuming w^* is continuous, this ensures $w^*(\hat{\mu}_t) o w^*(\mu)$.
- Draw arm with $N_i(t)$ below $\sum_{s=1}^t w_i^*(\hat{\mu}_s)$ (C-tracking)
- hence $N_i(t)/t o w_i^*(\mu)$

Inherit δ -correctness from GLR stopping/recommendation rule.

Theorem (Degenne et al. 2019)

Track-and-Stop with C-tracking has asymptotically optimal sample complexity.

Idea: draw $A_t \sim w^*(\hat{\mu}(t)).$

Track-and-Stop [Garivier and Kaufmann, 2016]

- \bullet Ensure $\hat{\mu}(t) \rightarrow \mu$ by forced exploration
- ullet assuming w^* is continuous, this ensures $w^*(\hat{\mu}_t) o w^*(\mu)$.
- Draw arm with $N_i(t)$ below $\sum_{s=1}^t w_i^*(\hat{\mu}_s)$ (C-tracking)
- hence $N_i(t)/t
 ightarrow w_i^*(oldsymbol{\mu})$

Inherit δ -correctness from GLR stopping/recommendation rule.

Theorem (Degenne et al. 2019)

Track-and-Stop with C-tracking has asymptotically optimal sample complexity.

Theorem (Degenne et al. 2019)

Track-and-Stop with D-tracking may fail to converge.

Outline

2 Introduction

3 Model

4 Lower Bound

5 Pure Exploration Algorithms

6 A Games Perspective on TaS

7 Experiments

8 Conclusion

Games perspective

Recall TaS based on plug-in estimate $w^*(\hat{\mu}_t)$ of oracle weights

$$m{w}^*(m{\mu}) = rgmax \min_{m{w}\in riangle_K} \sum_{m{\lambda}\in
eg i^*(m{\mu})}^K w_i d(\mu_i, \lambda_i)$$

Games perspective

Recall TaS based on plug-in estimate $w^*(\hat{\mu}_t)$ of oracle weights

$$m{w}^*(m{\mu}) \;=\; rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in
eg i^*(m{\mu})} \; \sum_{i=1}^K w_i d(\mu_i,\lambda_i)$$

We can implement the Track-and-Stop sampling rule by running an online-learning based saddle point solver to (approximate) convergence every round.

Choice of learners: AdaHedge vs Best Response.

Games perspective

Recall TaS based on plug-in estimate $w^*(\hat{\mu}_t)$ of oracle weights

$$m{w}^*(m{\mu}) \;=\; rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in
eg i^*(m{\mu})} \; \sum_{i=1}^K w_i d(\mu_i,\lambda_i)$$

We can implement the Track-and-Stop sampling rule by running an online-learning based saddle point solver to (approximate) convergence every round.

Choice of learners: AdaHedge vs Best Response.

The user needs to provide **best response oracle** (often tractable)

$$w, \mu \mapsto \operatorname*{argmin}_{\lambda \in \neg i^*(\mu)} \sum_{i=1}^{K} w_i d(\mu_i, \lambda_i).$$

Ironing out Inefficiencies

- We are computing $w^*(\hat{\mu}_t)$ on noisy $\hat{\mu}_t \approx \mu$. So how precise does our saddle point need to be?
- $\hat{\mu}_t pprox \hat{\mu}_{t+1}$. Can we reuse (most) computation?
- Can we get finite confidence guarantees?

Interleaved Iterative Solution

Main idea [Degenne, Koolen, and Ménard, 2019]: advance the saddle point solver by **one** iteration for every bandit interaction.

Sampling Rule

Compositionality

- The "overheads" of the ingredients **compose**: Tracking O(1), concentration \sqrt{T} , regret \sqrt{T} , optimism \sqrt{T} .
- Theorem (Degenne, Koolen, and Ménard 2019) The sample complexity is at most

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \le \ extsf{T}^*(oldsymbol{\mu}) \ {\sf ln} \ rac{1}{\delta} + {\it small}$$

Proof ideas (cheating with optimism, $i_t = i^*$)

As long as we do not stop, $t < \tau$,

$$\begin{split} \beta(t,\delta) &\geq \inf_{\boldsymbol{\lambda} \in \neg i_t} \sum_{k=1}^{K} N_t^k d(\mu^k, \lambda^k) \qquad (\text{stop rule}) \\ &\approx \inf_{\boldsymbol{\lambda} \in \neg i^*} \sum_{s=1}^t \sum_{k=1}^K w_s^k d(\mu^k, \lambda^k) \qquad (\text{tracking}) \\ &\geq \sum_{s=1}^t \sum_{k=1}^K w_s^k \mathbb{E}_{\boldsymbol{\lambda} \sim q_s} d(\mu^k, \lambda^k) - R_t^{\boldsymbol{\lambda}} \qquad (\text{regret } \boldsymbol{\lambda}) \\ &\geq \max_k \sum_{s=1}^t \mathbb{E}_{\boldsymbol{\lambda} \sim q_s} d(\mu^k, \lambda^k) - R_t^{\boldsymbol{\lambda}} - R_t^k \qquad (\text{regret } k) \\ &\geq t \inf_{q \in \mathcal{P}(\neg i^*)} \max_k \mathbb{E}_{\boldsymbol{\lambda} \sim q} d(\mu^k, \lambda^k) - O(\sqrt{t}) \end{split}$$

Find maximal t to get bound on τ .

Wouter Koole

Outline

2 Introduction

3 Model

4 Lower Bound

- 5 Pure Exploration Algorithms
- 6 A Games Perspective on TaS

7 Experiments

Conclusion

Best Arm Identification Experiment

Best Arm for Bernoulli bandit model $\mu = (0.3, 0.21, 0.2, 0.19, 0.18)$. The oracle weights are $w^* = (0.34, 0.25, 0.18, 0.13, 0.10)$. $\delta = 0.1$.

Minimum Threshold Experiment

Minimum Threshold for Gaussian bandit model $\mu = (0.5, 0.6)$ with threshold $\gamma = 0.6$, $w^* = (1, 0)$. Note the excessive sample complexity of T-C/T-D. $\delta = 10^{-10}$.

Outline

2 Introduction

- 3 Model
- 4 Lower Bound
- 5 Pure Exploration Algorithms
- 6 A Games Perspective on TaS
- 7 Experiments

Conclusion

- Pure Exploration currently going through a renaissance
- New and different instance-optimal identification algorithms
 - Best Arm
 - Combinatorial best action
 - Game Tree Search
 - ▶ ...
- Moving toward more complex queries. RL on the horizon
- Useful submodules

Topics Skipped

- Multiple correct answers (e.g. *ϵ* Best Arm) [Degenne and Koolen, 2019] ⇐ surprisingly subtle.
- Optimal algorithms based on variations of Thompson Sampling
 - Top-Two for Best Arm [Russo, 2016]
 - Murphy Sampling for Minimum Threshold [Kaufmann et al., 2018].

Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \not\rightarrow 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon

Part III

Reward Maximisation / Regret Minimisation

Now samples represent **reward**, and the algorithm aims to collect **as much reward as possible**.

Regret metric: maximum reward minus reward collected.

Famous UCB algorithm (family) [Auer et al., 2002].

 $O(\ln T)$ regret possible.

Stochastic Bandit Instance (Running Example)

Desired behaviour

Outline

- 10 Lower bound
- 11 Noise Free Case
- 12 The Real Deal

Introduction

Setting

Structure $\mathcal{M} \subseteq R^{\mathcal{K}}$. MAB instance $\mu \in \mathcal{M}$ Time horizon TExpfam $d(\mu, \lambda)$ Gaps $\Delta^k = \mu^* - \mu^k$

Regret :=
$$\sum_{k=1}^{K} \mathbb{E}[N_T^k] \Delta^k$$

Goals

- Asymptotic Optimality
- Finite-time Regret Guarantees
- General Structure-Aware Methodology
- Computational Efficiency

Banditual Context

Regret

- Unimodal [Combes and Proutiere, 2014]
- Lipschitz [Magureanu, Combes, and Proutière, 2014]
- Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]
- Linear [Lattimore and Szepesvári, 2017]
- OSSB [Combes, Magureanu, and Proutiere, 2017]

Pure Exploration

- Track-and-Stop (MAB) [Garivier and Kaufmann, 2016]
- Structure, Gaussian [Chen, Gupta, Li, Qiao, and Wang, 2017]
- Structure, ExpFam [Kaufmann and Koolen, 2018]
- Game core [Degenne, Koolen, and Ménard, 2019] part 1

Outline

Introduction

Noise Free Case

Argument [Graves and Lai, 1997]

Fix an **asymptotically consistent** algorithm for structure \mathcal{M} . Consider its behaviour on $\mu \in \mathcal{M}$, and on any alternative bandit model $\lambda \in \mathcal{M}$ with $i^*(\mu) \neq i^*(\lambda)$:

$$\mathbb{E}_{\mu}[N_{T}^{i^{*}(\mu)}]/T \to 1$$
 but $\mathbb{E}_{\lambda}[N_{T}^{i^{*}(\mu)}]/T \to 0.$

This stark **difference in behaviour** requires **discriminating information**! Specifically,

$$\mathsf{KL}(\mathbb{P}^{\mathcal{T}}_{\boldsymbol{\mu}} \, \big\| \, \mathbb{P}^{\mathcal{T}}_{\boldsymbol{\lambda}}) = \sum_{k} \mathbb{E}_{\boldsymbol{\mu}}[N^{k}_{\mathcal{T}}] d(\mu^{k}, \lambda^{k}) \geq \ln \mathcal{T}.$$

Instance-Dependent Regret Lower Bound

Any asymptotically consistent algorithm for structure $\mathcal M$ must incur on each $\mu\in\mathcal M$ regret at least

$$V_{\mathcal{T}} = \min_{N \ge 0} \sum_{k} N^{k} \Delta^{k} \text{ subject to } \inf_{\lambda \in \Lambda} \sum_{k} N^{k} d(\mu^{k}, \lambda^{k}) \ge \ln \mathcal{T}$$

where

$$\Lambda = \{ \boldsymbol{\lambda} \in \mathcal{M} \mid i^*(\boldsymbol{\lambda}) \neq i^*(\boldsymbol{\mu}) \}$$

This is a (semi-infinite) covering linear program.

Operationalising the Lower Bound

Earlier work

At each time step

- ullet compute oracle sample counts $N^*(\hat{\mu}_t)$ and advance $N_t o N^*$, or
- force exploration to ensure $\hat{\mu}_t \rightarrow \mu$.

Operationalising the Lower Bound

Earlier work

At each time step

- ullet compute oracle sample counts $N^*(\hat{\mu}_t)$ and advance $N_t o N^*$, or
- force exploration to ensure $\hat{\mu}_t \rightarrow \mu$.

This talk

- Reformat lower bound as zero-sum "minigame".
- Iteratively solve minigame by full information online learning.
- Use iterates to advance N_t .
- Add optimism to induce exploration.
- Compose regret bound from minigame regret + estimation regret

Minigame

We have $V_T = \frac{\ln T}{D^*}$ where

$$D^* = \underbrace{\max_{w \in \Delta} \inf_{\lambda \in \Lambda} \frac{\sum_k w^k d(\mu^k, \lambda^k)}{\sum_k w^k \Delta^k}}_{\substack{w^k \propto N^k \\ \text{pulls}}}$$

....

Minigame

We have $V_T = \frac{\ln T}{D^*}$ where

$$D^{*} = \underbrace{\max_{w \in \Delta} \inf_{\lambda \in \Lambda} \frac{\sum_{k} w^{k} d(\mu^{k}, \lambda^{k})}{\sum_{k} w^{k} \Delta^{k}}}_{\substack{w^{k} \propto N^{k}}}$$
$$= \underbrace{\max_{w \in \Delta} \inf_{\lambda \in \Lambda} \sum_{k} \tilde{w}^{k} \frac{d(\mu^{k}, \lambda^{k})}{\Delta^{k}}}_{\substack{w^{k} \propto N^{k} \Delta^{k}}}$$

k

NIL

Minigame

We have $V_T = \frac{\ln T}{D^*}$ where

$$D^{*} = \underbrace{\max_{w \in \Delta} \inf_{\lambda \in \Lambda} \frac{\sum_{k} w^{k} d(\mu^{k}, \lambda^{k})}{\sum_{k} w^{k} \Delta^{k}}}_{\text{pulls}}$$
$$= \underbrace{\max_{\tilde{w} \in \Delta} \inf_{\lambda \in \Lambda} \sum_{k} \tilde{w}^{k} \frac{d(\mu^{k}, \lambda^{k})}{\Delta^{k}}}_{\tilde{w} \in \Delta} \underbrace{\tilde{w}^{k} \propto N^{k} \Delta^{k}}_{\text{regret}}$$
$$= \underbrace{\inf_{q \in \Delta(\Lambda)} \max_{k} \frac{\mathbb{E}_{\lambda \sim q} \left[d(\mu^{k}, \lambda^{k}) \right]}{\Delta^{k}}}_{\Delta^{k}}$$

- - 1

Lower bound

Illustration

Overall Setup

Outline

Noise-free result

Let \mathcal{B}_n^k be regret of full information online learning (AdaHedge) w. linear losses on the simplex.

Theorem

Consider running our algorithm until $\inf_{\lambda \in \Lambda} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda^{k}) \geq \ln T$. The iterates w_{1}, \ldots, w_{n} satisfy

$$R_n = \sum_{t=1}^n \langle w_t, \Delta \rangle \leq V_T + \frac{\mathcal{B}_n^k}{D^*}$$

Note

- Can get k_1, \ldots, k_n using tracking (at cost $\Delta^{\max} \ln K$)
- Standard choice gives $n = O(\ln T)$ and $\mathcal{B}_n^k = O(\sqrt{n}) = O(\sqrt{\ln T}) = o(\ln T)$.

Regret analysis

Given moves $w_t \in riangle_K$ and $\lambda_t \in \Lambda$, we instantiate a *k*-learner for the gain function

$$g_t(\tilde{w}) = \langle w_t, \Delta \rangle \sum_k \tilde{w}^k \frac{d(\mu^k, \lambda_t^k)}{\Delta^k}$$

to provide regret bound

$$\sum_{t=1}^{n} g_t(\tilde{w}_t) \geq \max_k \sum_{t=1}^{n} \langle w_t, \Delta \rangle \frac{d(\mu^k, \lambda_t^k)}{\Delta^k} - \mathcal{B}_n^k.$$
(1)

Regret analysis (ctd)

Given $ilde{w}_t$ from the k-learner, we define player and opponent by

$$w_t^k \propto \tilde{w}_t^k / \Delta^k$$
 (2)
 $\lambda_t \in \operatorname{argmin}_{\lambda \in \Lambda} \sum_k w_t^k d(\mu^k, \lambda^k)$ (3)

to obtain

$$\sum_{t=1}^{n} g_{t}(\tilde{w}_{t}) = \sum_{t=1}^{n} \langle w_{t}, \Delta \rangle \sum_{k} \tilde{w}_{t}^{k} \frac{d(\mu^{k}, \lambda_{t}^{k})}{\Delta^{k}} \stackrel{(2)}{=} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda_{t}^{k})$$
$$\stackrel{(3)}{=} \sum_{t=1}^{n} \inf_{\lambda \in \Lambda} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda^{k}) \leq \inf_{\lambda \in \Lambda} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d(\mu^{k}, \lambda^{k})$$
(4)

Regret analysis (ctd)

The stopping condition plus regret bounds (1) and (4) result in

$$\ln T + \mathcal{B}_{n}^{k} \geq \max_{k} \sum_{t=1}^{n} \langle w_{t}, \Delta \rangle \frac{d(\mu^{k}, \lambda_{t}^{k})}{\Delta^{k}} = R_{n} \max_{k} \sum_{t=1}^{n} \frac{\langle w_{t}, \Delta \rangle}{R_{n}} \frac{d(\mu^{k}, \lambda_{t}^{k})}{\Delta^{k}}$$
$$\geq R_{n} \inf_{q \in \Delta(\Lambda)} \max_{k} \frac{\mathbb{E}_{\lambda \sim q} \left[d(\mu^{k}, \lambda^{k}) \right]}{\Delta^{k}} = R_{n} D^{*}$$

where we abbreviated $R_n = \sum_{t=1}^n \langle w_t, \Delta \rangle$. All in all we showed

$$R_n \leq V_T + \frac{\mathcal{B}_n^k}{D^*}$$

On Symmetry

Game-theoretic equilibrium is symmetric concept.

Can also focus on λ -learner instead of k-learner. Interesting trade-offs

- More complex domain $\lambda \in \Lambda$.
- No need for tracking, best response in k is "pure" arm.

Will show both in experiments.

Outline

Introduction

- 10 Lower bound
- Noise Free Case

13 Experiments

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for **every** bandit structure for which best response is tractable.

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for **every** bandit structure for which best response is tractable.

But we can do much better!

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for **every** bandit structure for which best response is tractable.

But we can do much better! Idea:

- Run only one iteration every round.
- Deal with unknown μ .
- Exploitation.

some issues . . .

First Issue

Actually, $\Delta^* = 0$. And we were dividing by it all over the place.

First Issue

Actually, $\Delta^* = 0$. And we were dividing by it all over the place.

Idea: run on $\Delta_{\epsilon}^{k} = \max{\{\Delta^{k}, \epsilon\}}.$

Theorem

$$\lim_{\epsilon \to 0} V_T^{\epsilon} = V_T$$

In several cases we can show perturbed value is $V_T^{\epsilon} \leq V_T + \sqrt{2\epsilon V_T}$.

One iteration every round

- Replace μ by estimate $\hat{\mu}_t$.
- Add optimism to force exploration.
 We introduce upper confidence bounds on the ratio KL/gap.

$$\begin{aligned} \text{UCB}_{s}^{k} &= \sup_{\xi \in \mathcal{C}_{s-1}^{k}} \frac{d(\xi, \lambda_{t}^{k})}{\max\left\{\epsilon_{s}, \mathbf{1}\{k \neq j_{s}\}\left[\mu_{s-1}^{+} - \xi\right]\right\}} \end{aligned}$$

where $\mathcal{C}_{s-1}^{k} &= \left[\hat{\mu}_{s-1}^{k} \pm \sqrt{\frac{\overline{\ln}(n_{s-1}^{j_{s}}, N_{s-1}^{k})}{N_{s-1}^{k}}}\right]. \end{aligned}$

We do not know identity of the best arm, and hence Λ (domain of λ) Estimate best arm, and run K independent interactions.

Algorithm

1: Pull each arm once and get
$$\hat{\mu}_{K}$$
.
2: for $t = K + 1, \dots, T$ do
3: if $\exists i \in [K]$, $\min_{\lambda \in \neg i} \sum_{k} N_{t-1}^{k} d(\hat{\mu}_{t-1}^{k}, \lambda^{k}) > f(t-1)$ then
4: $k_{t} = i$ (if there are several suitable *i*, pull any one of them)
5: else
6: $\mu_{t-1}^{+}, j_{t} = (\arg) \max_{j \in [K]} \hat{\mu}_{t-1}^{j} + \sqrt{\frac{\ln(n_{t-1}^{j}, N_{t-1}^{j})}{N_{t-1}^{j}}}$.
7: get \tilde{w}_{t} from learner $\mathcal{A}_{j_{t}}^{k}$, compute $w_{t}^{k} \propto \tilde{w}_{t}^{k} / \tilde{\Delta}^{k}$.
8: compute best response λ_{t} .
9: Compute UCB_{t}^{k} = \max_{\xi \in [\hat{\mu}_{t-1}^{k} - \dots, \hat{\mu}_{t-1}^{k} + \dots]} \left[\frac{d(\xi, \lambda_{t}^{k})}{\max_{\xi \in t, 1\{k \neq j_{t}\}[\mu_{t-1}^{k} - \xi]\}} \right]
10: $k_{t} = \arg\min_{k \in [K]} N_{t-1}^{k} - \sum_{s=1}^{t} w_{s}^{k}$. \triangleright Tracking
11: end if
12: Access $X_{t}^{k_{t}}$, update $\hat{\mu}_{t}$ and N_{t}

Outline

Introduction

- 10 Lower bound
- 11 Noise Free Case

Experiment: Sparse

Experiment: Linear

Conclusion

Game equilibrium based technique for matching **instance dependent lower bounds** for structured stochastic bandits.

All you need is **Best Response oracle**.

- Fine tuning
- What about "lower-order" terms not scaling with In T?
- Is minigame interaction "easy data"? MetaGrad [van Erven and Koolen, 2016]
- Minigames for other problems?

Conclusion

Game equilibrium based technique for matching **instance dependent lower bounds** for structured stochastic bandits.

All you need is **Best Response oracle**.

- Fine tuning
- What about "lower-order" terms not scaling with In T?
- Is minigame interaction "easy data"? MetaGrad [van Erven and Koolen, 2016]
- Minigames for other problems?

Thank you!

Discontinuous single-answer problems

15 KL Tensorises

Wouter Koolen

About that continuity assumption?

Can w^* be discontinuous?
About that continuity assumption?

Can w^* be discontinuous?

Example: Minimum Threshold

Continuity restored

Recall oracle weights are given by

$$m{w}^*(m{\mu}) = rgmax_{m{w}\in riangle} \inf_{m{\lambda}\in
eg i^*(m{\mu})} \sum_{m{a}} w_{m{a}} d(\mu_{m{a}},\lambda_{m{a}})$$

Continuity restored

Recall oracle weights are given by

$$w^*(\mu) = rgmax_{oldsymbol{w}\in riangle} \inf_{oldsymbol{\lambda}\in
eg i^*(\mu)} \sum_{oldsymbol{a}} w_{oldsymbol{a}} d(\mu_{oldsymbol{a}},\lambda_{oldsymbol{a}})$$

Theorem

 w^* , when viewed as a **set-valued** function, is upper hemicontinuous. Moreover, its output is always a convex set.

Intuition

On bandit model μ_{i} our empirical distribution will be a convex combination of δ_1 and $\delta_2.$

Outline

Discontinuous single-answer problems

KL Tensorises

Algorithm is common and observations are IID. Hence

$$\frac{P_{\mu}(I^{T}, X^{T})}{P_{\lambda}(I^{T}, X^{T})} = \prod_{t=1}^{T} \frac{P_{Alg}(I_{t}|I^{t-1}, X^{t-1}) \mu_{l_{t}}(X_{t})}{P_{Alg}(I_{t}|I^{t-1}, X^{t-1}) \lambda_{l_{t}}(X_{t})} = \prod_{t=1}^{T} \frac{\mu_{l_{t}}(X_{t})}{\lambda_{l_{t}}(X_{t})}$$

It follows that

$$\begin{aligned} \mathsf{KL}\big(P_{\mu}(I^{T}, X^{T})\big\|P_{\lambda}(I^{T}, X^{T})\big) &= \sum_{t=1}^{T} \mathbb{E}_{\mu}\left[\ln\frac{\mu_{I_{t}}(X_{t})}{\lambda_{I_{t}}(X_{t})}\right] \\ &= \sum_{t=1}^{T} \mathbb{E}_{\mu}\left[d(\mu_{I_{t}}, \lambda_{I_{t}})\right] \\ &= \sum_{i=1}^{K} \mathbb{E}_{\mu}\left[N_{i,T}\right]d(\mu_{i}, \lambda_{i}) \end{aligned}$$