Exploration and Exploitation in Structured Stochastic Bandits

Wouter M. Koolen

CWI

Collaborators

Pierre Ménard Aurélien Garivier

Part I

Saddle Points Intermezzo

Games

Objective function

$$
g(x, y)
$$

convex in x, concave in y.

Games

Objective function

$$
g(x, y)
$$

convex in x, concave in y.
The game value is

$$
V^{*}=\inf _{x} \sup _{y} g(x, y)=\sup _{y} \inf _{x} g(x, y) .
$$

Games

Objective function

$$
g(x, y)
$$

convex in x, concave in y.
The game value is

$$
V^{*}=\inf _{x} \sup _{y} g(x, y)=\sup _{y} \inf _{x} g(x, y)
$$

Definition
An ϵ-saddle point (\bar{x}, \bar{y}) satisfies

$$
V^{*}-\epsilon \leq \inf _{x} g(x, \bar{y}) \leq V^{*} \leq \sup _{y} g(\bar{x}, y) \leq V^{*}+\epsilon
$$

Question: how to find ϵ-saddle point?

Iterative Algorithm

Idea [Freund and Schapire, 1999]: play a regret minimisation algorithm for x against one for y.

- Players play x_{t} and y_{t}.
- Players see loss functions

$$
\begin{aligned}
& x \mapsto+g\left(x, y_{t}\right), \\
& y \mapsto-g\left(x_{t}, y\right) .
\end{aligned}
$$

Output pair of iterate averages: $\left(\frac{1}{T} \sum_{t=1}^{T} x_{t}, \frac{1}{T} \sum_{t=1}^{T} y_{t}\right)$.

Saddle point

Assume the players have regret (bounds) R_{T}^{x} and R_{T}^{y}, i.e.

$$
\begin{aligned}
& \sum_{t=1}^{T}+g\left(x_{t}, y_{t}\right)-\inf _{x} \sum_{t=1}^{T}+g\left(x, y_{t}\right) \leq R_{T}^{x} \\
& \sum_{t=1}^{T}-g\left(x_{t}, y_{t}\right)-\inf _{y} \sum_{t=1}^{T}-g\left(x_{t}, y\right) \leq R_{T}^{y}
\end{aligned}
$$

Theorem
The iterate averages $\bar{x}_{T}=\frac{1}{T} \sum_{t=1}^{T} x_{t}$ and $\bar{y}_{T}=\frac{1}{T} \sum_{t=1}^{T} y_{t}$ form an $\frac{R_{T}^{㐅}+R_{T}^{y}}{T}$-saddle point.

Analysis

$$
\begin{aligned}
V^{*} & =\inf _{x} \sup _{y} g(x, y) \\
& \leq \sup _{y} g\left(\bar{x}_{T}, y\right) \\
& \leq \sup _{y} \frac{1}{T} \sum_{t=1}^{T} g\left(x_{t}, y\right) \\
& \leq \frac{1}{T} \sum_{t=1}^{T} g\left(x_{t}, y_{t}\right)+\frac{R_{T}^{y}}{T} \\
& \leq \inf _{x}^{1} \frac{1}{T} \sum_{t=1}^{T} g\left(x, y_{t}\right)+\frac{R_{T}^{x}+R_{T}^{y}}{T} \\
& \leq \inf _{x} g\left(x, \bar{y}_{T}\right)+\frac{R_{T}^{x}+R_{T}^{y}}{T} \\
& \leq \inf _{x} \sup _{y} g(x, y)+\frac{R_{T}^{x}+R_{T}^{y}}{T} \\
& =V^{*}+\frac{R_{T}^{x}+R_{T}^{y}}{T}
\end{aligned}
$$

(suboptimal choice \bar{x}_{T})
(convexity in 1st argument)
(y player regret guarantee)
(x player regret guarantee)
(concavity in 2nd argument)
(suboptimal choice \bar{y}_{T})

Applications

Choice of online learning algorithm governed by domain of $g(x, y)$.

Applications

Choice of online learning algorithm governed by domain of $g(x, y)$.
For either player, we can use e.g.

- OGD, Hedge, FTRL, FTPL, $\ldots \quad \sqrt{T}$ regret $\Rightarrow \epsilon=1 / \sqrt{T}$

Applications

Choice of online learning algorithm governed by domain of $g(x, y)$.
For either player, we can use e.g.

- OGD, Hedge, FTRL, FTPL, $\ldots \quad \sqrt{T}$ regret $\Rightarrow \epsilon=1 / \sqrt{T}$
while the second player can ensure negative regret with
- Be-The-Leader
- Best Response no memory

Applications

Choice of online learning algorithm governed by domain of $g(x, y)$.
For either player, we can use e.g.

- OGD, Hedge, FTRL, FTPL, $\ldots \quad \sqrt{T}$ regret $\Rightarrow \epsilon=1 / \sqrt{T}$ while the second player can ensure negative regret with
- Be-The-Leader
- Best Response no memory

Many more options. Optimism [Rakhlin and Sridharan, 2013], principled path to Nesterov acceleration [Wang and Abernethy, 2018]

Outline

(1) Introduction to the Tutorial

Stochastic Bandit

Stochastic Bandit

Model（Unknown）

$$
\begin{aligned}
& \mathbb{P}(\text { (오 気看 })=1 / 6 \\
& \mathbb{P}(\text { (})=2 / 3 \\
& \mathbb{P}(\text { (号) }=1 / 2
\end{aligned}
$$

Stochastic Bandit Interaction

Tasks

(1) Pure Exploration: use trial to cure population
(2) Reward Maximisation: cure patients in trial

Structured Stochastic Bandit

Structured Stochastic Bandit

Model (Unknown)

$$
\begin{aligned}
& \mathbb{P}(\Theta) \times 1)=1 / 6 \\
& \mathbb{P}(\Theta) \times 2)=3 / 6 \\
& \left.\left.\mathbb{P}()^{-}\right) \times 3\right)=5 / 6 \\
& \mathbb{P}(\Theta) \times 4)=4 / 6 \\
& \left.\left.\mathbb{P}()^{-}\right) \times 5\right)=2 / 6
\end{aligned}
$$

Structured Stochastic Bandit Interaction

4
2

5
3

4
1

3

2

What This Tutorial is About

We will develop efficient learning algorithms for Pure Exploration and Reward Maximisation.

Information-theoretic lower bounds will tell us that the complexity of each task is characterised by a certain two-player zero-sum game.

We will base our learning algorithms on iterative saddle point solvers for this game.

Part II

Pure Exploration / Active Testing

Outline

(2) Introduction

(3) Model

4 Lower Bound
(5) Pure Exploration Algorithms
(6) A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Topic: Pure Exploration

Query: most effective drug dose?
most appealing website layout?
safest next robot action?

Topic: Pure Exploration

Query:
most effective drug dose?
most appealing website layout?
safest next robot action?

Main scientific questions

- Efficient systems
- Sample complexity as function of query and environment

Outline

(2) Introduction

(3) Model
4) Lower Bound
(5) Pure Exploration Algorithms
(- A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model
A K-armed bandit model is a tuple $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)$.

Environments

We fix an 1-d exponential family (Bernoulli, Gaussian, ...) parameterised by the mean. KL divergence denoted by $d(\mu, \lambda)$.

Multi-armed bandit model
A K-armed bandit model is a tuple $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)$.

Query

Set of possible environments $\mathcal{M} \subseteq \mathbb{R}^{K}$. Set of possible answers \mathcal{I}.
Correct answer function $i^{*}: \mathcal{M} \rightarrow \mathcal{I}$.

Examples

Problem name
Possible answers \mathcal{I}
Correct answer $i^{*}(\boldsymbol{\mu}) \quad \operatorname{argmax}_{k} \mu_{k}$

Best Arm

Minimum Threshold \{lo, hi\}
lo if $\min _{k} \mu_{k}<\gamma$
hi if $\min _{k} \mu_{k}>\gamma$

Examples

Problem name
Possible answers \mathcal{I}
Correct answer $i^{*}(\boldsymbol{\mu}) \quad \operatorname{argmax}_{k} \mu_{k}$
Best Arm

- Top-M
- Combinatorial Best Arm
- Maximum Profit
- Unit Ball

Minimum Threshold \{lo, hi\}
lo if $\min _{k} \mu_{k}<\gamma$ hi if $\min _{k} \mu_{k}>\gamma$

- Thresholding Bandit
- Pure Nash equilibrium
- Game Tree Search
- ...

Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_{t} \in[K]$. See $X_{t} \sim \mu_{A_{t}}$.
- Recommendation rule $\hat{l} \in \mathcal{I}$.

Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_{t} \in[K]$. See $X_{t} \sim \mu_{A_{t}}$.
- Recommendation rule $\hat{l} \in \mathcal{I}$.

Realisation of interaction: $\mathcal{H}:=\left(A_{1}, X_{1}, \ldots, A_{\tau}, X_{\tau}, \hat{l}\right)$.

Strategy for Learner

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $A_{t} \in[K]$. See $X_{t} \sim \mu_{A_{t}}$.
- Recommendation rule $\hat{l} \in \mathcal{I}$.

Realisation of interaction: $\mathcal{H}:=\left(A_{1}, X_{1}, \ldots, A_{\tau}, X_{\tau}, \hat{I}\right)$.
Two objectives: sample efficiency τ and correctness $\hat{l}=i^{*}(\boldsymbol{\mu})$.

Goal: PAC learning

Definition

Fix small confidence $\delta \in(0,1)$. A strategy is δ-correct if

$$
\mathbb{P}_{\boldsymbol{\mu}}\left(\hat{l} \neq i^{*}(\boldsymbol{\mu})\right) \leq \delta \quad \text { for every bandit model } \boldsymbol{\mu} \in \mathcal{M}
$$

Goal: PAC learning

Definition

Fix small confidence $\delta \in(0,1)$. A strategy is δ-correct if

$$
\mathbb{P}_{\boldsymbol{\mu}}\left(\hat{l} \neq i^{*}(\boldsymbol{\mu})\right) \leq \delta \quad \text { for every bandit model } \boldsymbol{\mu} \in \mathcal{M}
$$

Goal: minimise sample complexity $\mathbb{E}_{\boldsymbol{\mu}}[\tau]$ over all δ-correct strategies.

Goal: PAC learning

Definition

Fix small confidence $\delta \in(0,1)$. A strategy is δ-correct if

$$
\mathbb{P}_{\boldsymbol{\mu}}\left(\hat{l} \neq i^{*}(\boldsymbol{\mu})\right) \leq \delta \quad \text { for every bandit model } \boldsymbol{\mu} \in \mathcal{M}
$$

Goal: minimise sample complexity $\mathbb{E}_{\boldsymbol{\mu}}[\tau]$ over all δ-correct strategies.
Not in this talk: Fixed Budget.

Outline

(2) Introduction
(3) Model
4) Lower Bound
(5) Pure Exploration Algorithms
(6) A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$, yet $i^{*}(\boldsymbol{\mu}) \neq i^{*}(\boldsymbol{\lambda})$, then learner cannot stop and be correct in both.

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$, yet $i^{*}(\boldsymbol{\mu}) \neq i^{*}(\boldsymbol{\lambda})$, then learner cannot stop and be correct in both.
Define the alternative to answer $i \in \mathcal{I}$ by $\neg i:=\left\{\boldsymbol{\lambda} \in \mathcal{M} \mid i^{*}(\boldsymbol{\lambda}) \neq i\right\}$.

Instance-Dependent Sample Complexity Lower Bound

Intuition (going back at least to Lai and Robbins [1985]): if observations are likely under both $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$, yet $i^{*}(\boldsymbol{\mu}) \neq i^{*}(\boldsymbol{\lambda})$, then learner cannot stop and be correct in both.
Define the alternative to answer $i \in \mathcal{I}$ by $\neg i:=\left\{\boldsymbol{\lambda} \in \mathcal{M} \mid i^{*}(\boldsymbol{\lambda}) \neq i\right\}$.
Theorem (Castro 2014, Garivier and Kaufmann 2016)
Fix a δ-correct strategy. Then for every bandit model $\boldsymbol{\mu} \in \mathcal{M}$

$$
\mathbb{E}_{\boldsymbol{\mu}}[\tau] \geq T^{*}(\boldsymbol{\mu}) \ln \frac{1}{\delta}
$$

where the characteristic time $T^{*}(\boldsymbol{\mu})$ is given by

$$
\frac{1}{T^{*}(\boldsymbol{\mu})}=\max _{\boldsymbol{w} \in \triangle_{K}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

Example

Best Arm identification: $i^{*}(\boldsymbol{\mu})=\operatorname{argmax}_{i} \mu_{i}$. $K=5$ Bernoulli arms, $\boldsymbol{\mu}=(0.4,0.3,0.2,0.1,0.0)$.

$$
T^{*}(\boldsymbol{\mu})=200.4 \quad \boldsymbol{w}^{*}(\boldsymbol{\mu})=(0.45,0.46,0.06,0.02,0.01)
$$

At $\delta=0.05$, the time gets multiplied by $\ln \frac{1}{\delta}=3.0$.

Outline

(2) Introduction

(3) Model
(4) Lower Bound
(5) Pure Exploration Algorithms
(6) A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Pure Exploration Algorithms

Recall, a strategy is defined by

- Stopping rule
- Recommendation rule
- Sampling rule

Stopping and Recommendation Rules

Quantify evidence for $\left\{i^{*}(\boldsymbol{\mu})=i^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)\right\}$ vs alternative $\left\{i^{*}(\boldsymbol{\mu}) \neq i^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)\right\}$.

Stopping and Recommendation Rules

Quantify evidence for $\left\{i^{*}(\boldsymbol{\mu})=i^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)\right\}$ vs alternative $\left\{i^{*}(\boldsymbol{\mu}) \neq i^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)\right\}$.
Definition
The extended GLR statistic is defined as

$$
\hat{\Lambda}_{t}=\inf _{\lambda \in \neg i^{*}(\hat{\mu}(t))} \sum_{a=1}^{K} N_{a}(t) d\left(\hat{\mu}_{a}(t), \lambda_{a}\right)
$$

Stopping and Recommendation Rules

Quantify evidence for $\left\{i^{*}(\boldsymbol{\mu})=i^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)\right\}$ vs alternative $\left\{i^{*}(\boldsymbol{\mu}) \neq i^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)\right\}$.
Definition
The extended GLR statistic is defined as

$$
\hat{\Lambda}_{t}=\inf _{\lambda \in \neg i^{*}(\hat{\mu}(t))} \sum_{a=1}^{K} N_{a}(t) d\left(\hat{\mu}_{a}(t), \lambda_{a}\right)
$$

Proposal: stop when

$$
\hat{\Lambda}_{t} \geq \beta(t, \delta):=\ln \frac{1}{\delta}+K \ln \ln t+K \ln \ln \frac{1}{\delta}
$$

and recommend $\hat{I}=i^{*}\left(\hat{\mu}_{t}\right)$.
Theorem (Kaufmann and Koolen 2018)
The above stopping and recommendation rules, combined with any sampling rule give a δ-correct algorithm.

Operationalisation of the Oracle Weights

Recall sample complexity lower bound governed by

$$
\max _{\boldsymbol{w} \in \triangle_{K}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

Operationalisation of the Oracle Weights

Recall sample complexity lower bound governed by

$$
\max _{\boldsymbol{w} \in \triangle_{K}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

Any matching algorithm must sample with optimal (oracle) proportions

$$
\boldsymbol{w}^{*}(\boldsymbol{\mu})=\underset{\boldsymbol{w} \in \Delta_{K}}{\operatorname{argmax}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

Putting it all together

Idea: draw $A_{t} \sim \boldsymbol{w}^{*}(\hat{\boldsymbol{\mu}}(t))$.

Putting it all together

Idea: draw $A_{t} \sim \boldsymbol{w}^{*}(\hat{\boldsymbol{\mu}}(t))$.
Track-and-Stop [Garivier and Kaufmann, 2016]

- Ensure $\hat{\boldsymbol{\mu}}(t) \rightarrow \boldsymbol{\mu}$ by forced exploration
- assuming \boldsymbol{w}^{*} is continuous, this ensures $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right) \rightarrow \boldsymbol{w}^{*}(\boldsymbol{\mu})$.
- Draw arm with $N_{i}(t)$ below $\sum_{s=1}^{t} w_{i}^{*}\left(\hat{\mu}_{s}\right)$ (C-tracking)
- hence $N_{i}(t) / t \rightarrow w_{i}^{*}(\boldsymbol{\mu})$

Inherit δ-correctness from GLR stopping/recommendation rule.

Putting it all together

Idea: draw $A_{t} \sim \boldsymbol{w}^{*}(\hat{\boldsymbol{\mu}}(t))$.
Track-and-Stop [Garivier and Kaufmann, 2016]

- Ensure $\hat{\boldsymbol{\mu}}(t) \rightarrow \boldsymbol{\mu}$ by forced exploration
- assuming \boldsymbol{w}^{*} is continuous, this ensures $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right) \rightarrow \boldsymbol{w}^{*}(\boldsymbol{\mu})$.
- Draw arm with $N_{i}(t)$ below $\sum_{s=1}^{t} w_{i}^{*}\left(\hat{\mu}_{s}\right)$ (C-tracking)
- hence $N_{i}(t) / t \rightarrow w_{i}^{*}(\boldsymbol{\mu})$

Inherit δ-correctness from GLR stopping/recommendation rule.
Theorem (Degenne et al. 2019)
Track-and-Stop with C-tracking has asymptotically optimal sample complexity.

Putting it all together

Idea: draw $A_{t} \sim \boldsymbol{w}^{*}(\hat{\boldsymbol{\mu}}(t))$.
Track-and-Stop [Garivier and Kaufmann, 2016]

- Ensure $\hat{\boldsymbol{\mu}}(t) \rightarrow \boldsymbol{\mu}$ by forced exploration
- assuming \boldsymbol{w}^{*} is continuous, this ensures $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right) \rightarrow \boldsymbol{w}^{*}(\boldsymbol{\mu})$.
- Draw arm with $N_{i}(t)$ below $\sum_{s=1}^{t} w_{i}^{*}\left(\hat{\mu}_{s}\right)$ (C-tracking)
- hence $N_{i}(t) / t \rightarrow w_{i}^{*}(\boldsymbol{\mu})$

Inherit δ-correctness from GLR stopping/recommendation rule.
Theorem (Degenne et al. 2019)
Track-and-Stop with C-tracking has asymptotically optimal sample complexity.

Theorem (Degenne et al. 2019)
Track-and-Stop with D-tracking may fail to converge.

Outline

(2) Introduction

(3) Model
4. Lower Bound
(5) Pure Exploration Algorithms
(6) A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Games perspective

Recall TaS based on plug-in estimate $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)$ of oracle weights

$$
\boldsymbol{w}^{*}(\boldsymbol{\mu})=\underset{\boldsymbol{w} \in \Delta_{K}}{\operatorname{argmax}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

Games perspective

Recall TaS based on plug-in estimate $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)$ of oracle weights

$$
\boldsymbol{w}^{*}(\boldsymbol{\mu})=\underset{\boldsymbol{w} \in \Delta_{K}}{\operatorname{argmax}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

We can implement the Track-and-Stop sampling rule by running an online-learning based saddle point solver to (approximate) convergence every round.

Choice of learners: AdaHedge vs Best Response.

Games perspective

Recall TaS based on plug-in estimate $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)$ of oracle weights

$$
\boldsymbol{w}^{*}(\boldsymbol{\mu})=\underset{\boldsymbol{w} \in \Delta_{K}}{\operatorname{argmax}} \min _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right)
$$

We can implement the Track-and-Stop sampling rule by running an online-learning based saddle point solver to (approximate) convergence every round.

Choice of learners: AdaHedge vs Best Response.
The user needs to provide best response oracle (often tractable)

$$
\boldsymbol{w}, \boldsymbol{\mu} \mapsto \underset{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})}{\operatorname{argmin}} \sum_{i=1}^{K} w_{i} d\left(\mu_{i}, \lambda_{i}\right) .
$$

Ironing out Inefficiencies

- We are computing $\boldsymbol{w}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)$ on noisy $\hat{\boldsymbol{\mu}}_{t} \approx \boldsymbol{\mu}$. So how precise does our saddle point need to be?
- $\hat{\mu}_{t} \approx \hat{\mu}_{t+1}$. Can we reuse (most) computation?
- Can we get finite confidence guarantees?

Interleaved Iterative Solution

Main idea [Degenne, Koolen, and Ménard, 2019]: advance the saddle point solver by one iteration for every bandit interaction.

Sampling Rule

Compositionality

The "overheads" of the ingredients compose: Tracking $O(1)$, concentration \sqrt{T}, regret \sqrt{T}, optimism \sqrt{T}.

Theorem (Degenne, Koolen, and Ménard 2019)
The sample complexity is at most

$$
\mathbb{E}_{\boldsymbol{\mu}}[\tau] \leq T^{*}(\boldsymbol{\mu}) \ln \frac{1}{\delta}+\text { small }
$$

Proof ideas (cheating with optimism, $i_{t}=i^{*}$)

As long as we do not stop, $t<\tau$,

$$
\begin{aligned}
\beta(t, \delta) & \geq \inf _{\boldsymbol{\lambda} \in \neg i_{t}} \sum_{k=1}^{K} N_{t}^{k} d\left(\mu^{k}, \lambda^{k}\right) \\
& \approx \inf _{\boldsymbol{\lambda} \in \neg i^{*}} \sum_{s=1}^{t} \sum_{k=1}^{K} w_{s}^{k} d\left(\mu^{k}, \lambda^{k}\right) \\
& \geq \sum_{s=1}^{t} \sum_{k=1}^{K} w_{s}^{k} \mathbb{E}_{\boldsymbol{\lambda} \sim \boldsymbol{q}_{s}} d\left(\mu^{k}, \lambda^{k}\right)-R_{t}^{\lambda} \quad \quad \text { (tracking) } \\
& \geq \max _{k} \sum_{s=1}^{t} \mathbb{E}_{\boldsymbol{\lambda} \sim \boldsymbol{q}_{s}} d\left(\mu^{k}, \lambda^{k}\right)-R_{t}^{\lambda}-R_{t}^{k} \\
& \geq t \inf _{\boldsymbol{q} \in \mathcal{P}\left(\neg i^{*}\right)}^{\max } \mathbb{E}_{\boldsymbol{\lambda} \sim \boldsymbol{q}} d\left(\mu^{k}, \lambda^{k}\right)-O(\sqrt{t})
\end{aligned}
$$

Find maximal t to get bound on τ.

Outline

(2) Introduction

(3) Model

4 Lower Bound
(5) Pure Exploration Algorithms
(6) A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Best Arm Identification Experiment

Best Arm for Bernoulli bandit model $\boldsymbol{\mu}=(0.3,0.21,0.2,0.19,0.18)$. The oracle weights are $\boldsymbol{w}^{*}=(0.34,0.25,0.18,0.13,0.10) . \delta=0.1$.

Minimum Threshold Experiment

Minimum Threshold for Gaussian bandit model $\boldsymbol{\mu}=(0.5,0.6)$ with threshold $\gamma=0.6, \boldsymbol{w}^{*}=(1,0)$. Note the excessive sample complexity of T-C/T-D. $\delta=10^{-10}$.

Outline

(2) Introduction

(3) Model

4 Lower Bound
(5) Pure Exploration Algorithms
(6) A Games Perspective on TaS
(7) Experiments
(8) Conclusion

Conclusion

- Pure Exploration currently going through a renaissance
- New and different instance-optimal identification algorithms
- Best Arm
- Combinatorial best action
- Game Tree Search
- ...
- Moving toward more complex queries. RL on the horizon...
- Useful submodules

Topics Skipped

- Multiple correct answers (e.g. ϵ Best Arm) [Degenne and Koolen, 2019] \Leftarrow surprisingly subtle.
- Optimal algorithms based on variations of Thompson Sampling
- Top-Two for Best Arm [Russo, 2016]
- Murphy Sampling for Minimum Threshold [Kaufmann et al., 2018].

Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \nrightarrow 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon

Part III

Reward Maximisation / Regret Minimisation

Change of perspective

Now samples represent reward, and the algorithm aims to collect as much reward as possible.

Regret metric: maximum reward minus reward collected.
Famous UCB algorithm (family) [Auer et al., 2002].
$O(\ln T)$ regret possible.

Stochastic Bandit Instance (Running Example)

Desired behaviour

Outline

(9) Introduction

(10) Lower bound
(11) Noise Free Case
(12) The Real Deal
(13) Experiments

Setting

Structure $\mathcal{M} \subseteq R^{K}$.
MAB instance $\boldsymbol{\mu} \in \mathcal{M}$
Time horizon T
Expfam $d(\mu, \lambda)$
Gaps $\Delta^{k}=\mu^{*}-\mu^{k}$

$$
\text { Regret }:=\sum_{k=1}^{K} \mathbb{E}\left[N_{T}^{k}\right] \Delta^{k}
$$

Goals

- Asymptotic Optimality
- Finite-time Regret Guarantees
- General Structure-Aware Methodology
- Computational Efficiency

Banditual Context

Regret

- Unimodal [Combes and Proutiere, 2014]
- Lipschitz [Magureanu, Combes, and Proutière, 2014]
- Rank-1 [Katariya, Kveton, Szepesvári, Vernade, and Wen, 2017]
- Linear [Lattimore and Szepesvári, 2017]
- OSSB [Combes, Magureanu, and Proutiere, 2017]

Pure Exploration

- Track-and-Stop (MAB) [Garivier and Kaufmann, 2016]
- Structure, Gaussian [Chen, Gupta, Li, Qiao, and Wang, 2017]
- Structure, ExpFam [Kaufmann and Koolen, 2018]
- Game core [Degenne, Koolen, and Ménard, 2019] part 1

Outline

(9) Introduction

(10) Lower bound
(11) Noise Free Case
(12) The Real Deal
(13) Experiments

Argument [Graves and Lai, 1997]

Fix an asymptotically consistent algorithm for structure \mathcal{M}. Consider its behaviour on $\boldsymbol{\mu} \in \mathcal{M}$, and on any alternative bandit model $\boldsymbol{\lambda} \in \mathcal{M}$ with $i^{*}(\boldsymbol{\mu}) \neq i^{*}(\boldsymbol{\lambda})$:

$$
\mathbb{E}_{\boldsymbol{\mu}}\left[N_{T}^{i^{*}(\mu)}\right] / T \rightarrow 1 \quad \text { but } \quad \mathbb{E}_{\boldsymbol{\lambda}}\left[N_{T}^{i^{*}(\mu)}\right] / T \rightarrow 0
$$

This stark difference in behaviour requires discriminating information! Specifically,

$$
\mathrm{KL}\left(\mathbb{P}_{\boldsymbol{\mu}}^{T} \| \mathbb{P}_{\lambda}^{T}\right)=\sum_{k} \mathbb{E}_{\boldsymbol{\mu}}\left[N_{T}^{k}\right] d\left(\mu^{k}, \lambda^{k}\right) \geq \ln T
$$

Instance-Dependent Regret Lower Bound

Any asymptotically consistent algorithm for structure \mathcal{M} must incur on each $\boldsymbol{\mu} \in \mathcal{M}$ regret at least

$$
V_{T}=\min _{N \geq \mathbf{0}} \sum_{k} N^{k} \Delta^{k} \quad \text { subject to } \quad \inf _{\lambda \in \Lambda} \sum_{k} N^{k} d\left(\mu^{k}, \lambda^{k}\right) \geq \ln T
$$

where

$$
\Lambda=\left\{\boldsymbol{\lambda} \in \mathcal{M} \mid i^{*}(\boldsymbol{\lambda}) \neq i^{*}(\boldsymbol{\mu})\right\}
$$

This is a (semi-infinite) covering linear program.

Operationalising the Lower Bound

Earlier work

At each time step

- compute oracle sample counts $\boldsymbol{N}^{*}\left(\hat{\boldsymbol{\mu}}_{t}\right)$ and advance $\boldsymbol{N}_{t} \rightarrow \boldsymbol{N}^{*}$, or
- force exploration to ensure $\hat{\boldsymbol{\mu}}_{t} \rightarrow \boldsymbol{\mu}$.

Operationalising the Lower Bound

Earlier work

At each time step

- compute oracle sample counts $\boldsymbol{N}^{*}\left(\hat{\mu}_{t}\right)$ and advance $N_{t} \rightarrow \boldsymbol{N}^{*}$, or
- force exploration to ensure $\hat{\mu}_{t} \rightarrow \boldsymbol{\mu}$.

This talk

- Reformat lower bound as zero-sum "minigame".
- Iteratively solve minigame by full information online learning.
- Use iterates to advance $\boldsymbol{N}_{\boldsymbol{t}}$.
- Add optimism to induce exploration.
- Compose regret bound from minigame regret + estimation regret

Minigame

We have $V_{T}=\frac{\ln T}{D^{*}}$ where

$$
D^{*}=\max _{\boldsymbol{w} \in \Delta \boldsymbol{\lambda} \in \Lambda} \frac{\sum_{k} w^{k} d\left(\mu^{k}, \lambda^{k}\right)}{\sum_{k} w^{k} \Delta^{k}}
$$

Minigame

We have $V_{T}=\frac{\ln T}{D^{*}}$ where

$$
\begin{aligned}
D^{*} & =\operatorname{maxinf}_{w \in \lambda \in \Lambda} \frac{\sum_{k} w^{k} d\left(\mu^{k}, \lambda^{k}\right)}{\sum_{k} w^{k} \Delta^{k}} \\
& =\operatorname{maxinf}_{w \in \Delta \in \Lambda} \sum_{k} \tilde{w}^{k} \frac{\left(\mu^{k}, \lambda^{k}\right)}{\Delta^{k}}
\end{aligned}
$$

Minigame

We have $V_{T}=\frac{\ln T}{D^{*}}$ where

$$
\begin{aligned}
& D^{*}=\max _{\boldsymbol{w} \in \Delta \boldsymbol{\lambda} \in \Lambda} \frac{\sum_{k} w^{k} d\left(\mu^{k}, \lambda^{k}\right)}{\sum_{k} w^{k} \Delta^{k}} \\
& =\max _{\tilde{\tilde{w}} \in \triangle \lambda \in \Lambda} \sum_{k} \tilde{w}^{k} \frac{d\left(\mu^{k}, \lambda^{k}\right)}{\Delta^{k}} \quad \begin{array}{l}
\tilde{w}^{k} \propto N^{k} \Delta^{k} \\
\text { regret }
\end{array} \\
& =\inf _{\boldsymbol{q} \in \Delta(\Lambda)} \max _{k} \frac{\mathbb{E}_{\boldsymbol{\lambda} \sim \boldsymbol{q}}\left[d\left(\mu^{k}, \lambda^{k}\right)\right]}{\Delta^{k}}
\end{aligned}
$$

Illustration

Support for Lipschitz

Overall Setup

Outline

(9) Introduction

(10) Lower bound
(11) Noise Free Case
(12) The Real Deal
(13) Experiments

Noise-free result

Let \mathcal{B}_{n}^{k} be regret of full information online learning (AdaHedge) w. linear losses on the simplex.

Theorem

Consider running our algorithm until $\inf _{\lambda \in \Lambda} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d\left(\mu^{k}, \lambda^{k}\right) \geq \ln T$. The iterates $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{n}$ satisfy

$$
R_{n}=\sum_{t=1}^{n}\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle \leq V_{T}+\frac{\mathcal{B}_{n}^{k}}{D^{*}}
$$

Note

- Can get k_{1}, \ldots, k_{n} using tracking (at cost $\Delta^{\max } \ln K$)
- Standard choice gives $n=O(\ln T)$ and $\mathcal{B}_{n}^{k}=O(\sqrt{n})=O(\sqrt{\ln T})=o(\ln T)$.

Regret analysis

Given moves $\boldsymbol{w}_{t} \in \triangle_{K}$ and $\lambda_{t} \in \Lambda$, we instantiate a k-learner for the gain function

$$
g_{t}(\tilde{\boldsymbol{w}})=\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle \sum_{k} \tilde{w}^{k} \frac{d\left(\mu^{k}, \lambda_{t}^{k}\right)}{\Delta^{k}}
$$

to provide regret bound

$$
\begin{equation*}
\sum_{t=1}^{n} g_{t}\left(\tilde{\boldsymbol{w}}_{t}\right) \geq \max _{k} \sum_{t=1}^{n}\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle \frac{d\left(\mu^{k}, \lambda_{t}^{k}\right)}{\Delta^{k}}-\mathcal{B}_{n}^{k} \tag{1}
\end{equation*}
$$

Regret analysis (ctd)

Given $\tilde{\boldsymbol{w}}_{t}$ from the k-learner, we define player and opponent by

$$
\begin{align*}
w_{t}^{k} & \propto \tilde{w}_{t}^{k} / \Delta^{k} \tag{2}\\
\lambda_{t} & \in \underset{\lambda \in \Lambda}{\operatorname{argmin}} \sum_{k} w_{t}^{k} d\left(\mu^{k}, \lambda^{k}\right) \tag{3}
\end{align*}
$$

to obtain

$$
\begin{align*}
\sum_{t=1}^{n} g_{t}\left(\tilde{\boldsymbol{w}}_{t}\right) & =\sum_{t=1}^{n}\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle \sum_{k} \tilde{w}_{t}^{k} \frac{d\left(\mu^{k}, \lambda_{t}^{k}\right)}{\Delta^{k}} \stackrel{(2)}{=} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d\left(\mu^{k}, \lambda_{t}^{k}\right) \\
& \stackrel{(3)}{=} \sum_{t=1}^{n} \inf _{\lambda \in \Lambda} \sum_{k} w_{t}^{k} d\left(\mu^{k}, \lambda^{k}\right) \leq \inf _{\lambda \in \Lambda} \sum_{t=1}^{n} \sum_{k} w_{t}^{k} d\left(\mu^{k}, \lambda^{k}\right) \tag{4}
\end{align*}
$$

Regret analysis (ctd)

The stopping condition plus regret bounds (1) and (4) result in

$$
\begin{aligned}
\ln T+\mathcal{B}_{n}^{k} & \geq \max _{k} \sum_{t=1}^{n}\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle \frac{d\left(\mu^{k}, \lambda_{t}^{k}\right)}{\Delta^{k}}=R_{n} \max _{k} \sum_{t=1}^{n} \frac{\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle}{R_{n}} \frac{d\left(\mu^{k}, \lambda_{t}^{k}\right)}{\Delta^{k}} \\
& \geq R_{n} \inf _{\boldsymbol{q} \in \Delta(\Lambda)} \max _{k} \frac{\mathbb{E}_{\boldsymbol{\lambda} \sim \boldsymbol{q}}\left[d\left(\mu^{k}, \lambda^{k}\right)\right]}{\Delta^{k}}=R_{n} D^{*}
\end{aligned}
$$

where we abbreviated $R_{n}=\sum_{t=1}^{n}\left\langle\boldsymbol{w}_{t}, \Delta\right\rangle$. All in all we showed

$$
R_{n} \leq V_{T}+\frac{\mathcal{B}_{n}^{k}}{D^{*}}
$$

On Symmetry

Game-theoretic equilibrium is symmetric concept.
Can also focus on $\boldsymbol{\lambda}$-learner instead of k-learner. Interesting trade-offs

- More complex domain $\boldsymbol{\lambda} \in \Lambda$.
- No need for tracking, best response in k is "pure" arm.

Will show both in experiments.

Outline

(9) Introduction

(10) Lower bound
(11) Noise Free Case
(12) The Real Deal
(13) Experiments

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for every bandit structure for which best response is tractable.

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for every bandit structure for which best response is tractable.

But we can do much better!

Scaling up

Can use what we developed so far to compute oracle weights every round (OSSB). Efficient for every bandit structure for which best response is tractable.

But we can do much better! Idea:

- Run only one iteration every round.
- Deal with unknown $\boldsymbol{\mu}$.
- Exploitation.
some issues ...

First Issue

Actually, $\Delta^{*}=0$. And we were dividing by it all over the place.

First Issue

Actually, $\Delta^{*}=0$. And we were dividing by it all over the place.
Idea: run on $\Delta_{\epsilon}^{k}=\max \left\{\Delta^{k}, \epsilon\right\}$.

Theorem

$$
\lim _{\epsilon \rightarrow 0} V_{T}^{\epsilon}=V_{T}
$$

In several cases we can show perturbed value is $V_{T}^{\epsilon} \leq V_{T}+\sqrt{2 \epsilon V_{T}}$.

One iteration every round

- Replace $\boldsymbol{\mu}$ by estimate $\hat{\boldsymbol{\mu}}_{t}$.
- Add optimism to force exploration.

We introduce upper confidence bounds on the ratio $\mathrm{KL} /$ gap.

$$
\begin{aligned}
\mathrm{UCB}_{s}^{k} & =\sup _{\xi \in \mathcal{C}_{s-1}^{k}} \frac{d\left(\xi, \lambda_{t}^{k}\right)}{\max \left\{\epsilon_{s}, \mathbf{1}\left\{k \neq j_{s}\right\}\left[\mu_{s-1}^{+}-\xi\right]\right\}} \\
\text { where } \mathcal{C}_{s-1}^{k} & =\left[\hat{\mu}_{s-1}^{k} \pm \sqrt{\frac{\overline{\ln }\left(n_{s-1}^{j_{s}}, N_{s-1}^{k}\right)}{N_{s-1}^{k}}}\right]
\end{aligned}
$$

- We do not know identity of the best arm, and hence Λ (domain of $\boldsymbol{\lambda}$) Estimate best arm, and run K independent interactions.

Algorithm

1: Pull each arm once and get $\hat{\boldsymbol{\mu}}_{K}$.
2: for $t=K+1, \cdots, T$ do
3: if $\exists i \in[K], \min _{\lambda \in \neg i} \sum_{k} N_{t-1}^{k} d\left(\hat{\mu}_{t-1}^{k}, \lambda^{k}\right)>f(t-1)$ then
4: $\quad k_{t}=i$ (if there are several suitable i, pull any one of them)
else
6: $\quad \mu_{t-1}^{+}, j_{t}=(\arg) \max _{j \in[K]} \hat{\mu}_{t-1}^{j}+\sqrt{\frac{\overline{\operatorname{In}\left(n_{t-1}^{j}, N_{t-1}^{j}\right)}}{N_{t-1}^{j}}}$.
7: get $\tilde{\boldsymbol{w}}_{t}$ from learner $\mathcal{A}_{j_{t}}^{k}$, compute $w_{t}^{k} \propto \tilde{w}_{t}^{k} / \tilde{\Delta}^{k}$.
8: compute best response $\boldsymbol{\lambda}_{t}$.
9:
Compute $\mathrm{UCB}_{t}^{k}=\max _{\xi \in\left[\hat{\mu}_{t-1}^{k}-\ldots, \hat{\mu}_{t-1}^{k}+\ldots\right]}\left[\frac{d\left(\xi, \lambda_{t}^{k}\right)}{\max \left\{\varepsilon_{t}, \mathbf{1}\left\{k \neq j_{t}\right\}\left[\mu_{t-1}^{+}-\xi\right]\right\}}\right]$
10

$$
k_{t}=\operatorname{argmin}_{k \in[K]} N_{t-1}^{k}-\sum_{s=1}^{t} w_{s}^{k} .
$$

\triangleright Tracking
11: end if
12: \quad Access $X_{t}^{k_{t}}$, update $\hat{\mu}_{t}$ and \boldsymbol{N}_{t}
13: end for

Outline

(9) Introduction

(10) Lower bound
(11) Noise Free Case
(12) The Real Deal
(13) Experiments

Experiment: Sparse

$\mu=[0.3,0.8,0.3,0.3,0.3,0.3]$ in Sparse

Experiment: Linear

Conclusion

Game equilibrium based technique for matching instance dependent lower bounds for structured stochastic bandits.
All you need is Best Response oracle.

- Fine tuning
- What about "lower-order" terms not scaling with In T?
- Is minigame interaction "easy data"? MetaGrad [van Erven and Koolen, 2016]
- Minigames for other problems?

Conclusion

Game equilibrium based technique for matching instance dependent lower bounds for structured stochastic bandits.
All you need is Best Response oracle.

- Fine tuning
- What about "lower-order" terms not scaling with $\ln T$?
- Is minigame interaction "easy data"? MetaGrad [van Erven and Koolen, 2016]
- Minigames for other problems?

Thank you!

Outline

(14) Discontinuous single-answer problems

(15) KL Tensorises

About that continuity assumption?

Can \boldsymbol{w}^{*} be discontinuous?

About that continuity assumption?

Can \boldsymbol{w}^{*} be discontinuous?
Example: Minimum Threshold

Continuity restored

Recall oracle weights are given by

$$
\boldsymbol{w}^{*}(\boldsymbol{\mu})=\underset{\boldsymbol{w} \in \triangle}{\operatorname{argmax}} \inf _{\boldsymbol{\lambda} \in i^{*}(\boldsymbol{\mu})} \sum_{a} w_{a} d\left(\mu_{\mathrm{a}}, \lambda_{a}\right)
$$

Continuity restored

Recall oracle weights are given by

$$
\boldsymbol{w}^{*}(\boldsymbol{\mu})=\underset{\boldsymbol{w} \in \triangle}{\operatorname{argmax}} \inf _{\boldsymbol{\lambda} \in \neg i^{*}(\boldsymbol{\mu})} \sum_{a} w_{a} d\left(\mu_{a}, \lambda_{a}\right)
$$

Theorem
\boldsymbol{w}^{*}, when viewed as a set-valued function, is upper hemicontinuous. Moreover, its output is always a convex set.

Intuition

On bandit model $\boldsymbol{\mu}$, our empirical distribution will be a convex combination of δ_{1} and δ_{2}.

Outline

(14) Discontinuous single-answer problems

(15) KL Tensorises

KL Tensorises

Algorithm is common and observations are IID. Hence

$$
\frac{P_{\mu}\left(I^{T}, X^{T}\right)}{P_{\lambda}\left(I^{T}, X^{T}\right)}=\prod_{t=1}^{T} \frac{P_{A l g}\left(I_{t} \mid I^{t-1}, X^{t-1}\right) \mu_{I_{t}}\left(X_{t}\right)}{P_{A l g}\left(I_{t}| | I^{t-1}, X^{t-1}\right) \lambda_{I_{t}}\left(X_{t}\right)}=\prod_{t=1}^{T} \frac{\mu_{I_{t}}\left(X_{t}\right)}{\lambda_{I_{t}}\left(X_{t}\right)}
$$

It follows that

$$
\begin{aligned}
\mathrm{KL}\left(P_{\mu}\left(I^{T}, X^{T}\right) \| P_{\lambda}\left(I^{T}, X^{T}\right)\right) & =\sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{\mu}}\left[\ln \frac{\mu_{I_{t}}\left(X_{t}\right)}{\lambda_{I_{t}}\left(X_{t}\right)}\right] \\
& =\sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{\mu}}\left[d\left(\mu_{I_{t}}, \lambda_{I_{t}}\right)\right] \\
& =\sum_{i=1}^{K} \mathbb{E}_{\mu}\left[N_{i, T}\right] d\left(\mu_{i}, \lambda_{i}\right)
\end{aligned}
$$

