Active Learning Self-Play in the age of Deep Learning

Wouter M. Koolen

EURANDOM, Tuesday 19th March, 2019

Outline

Introduction

- Question
- Self-Play in Matrix games

2) Practice

Poker

• Go

Main Question

Beyond supervised learning

What data should the learning system collect?

Active learning: query labels of instances. Learn good classifier. Reinforcement learning: obtain rewards. Learn good policy.

This talk

Let's look at deep neural networks in games.

- Learning system decides which data are collected.
- Here: self-play.

Consider a two-player finite zero sum game.

$$\mathsf{M} = \boxed{\begin{array}{c|c} 1 & 4 \\ \hline 3 & 2 \end{array}}$$

Goal: find Nash Equilibrium in mixed strategies (saddle point) witnessing value.

$$V^* = \min_{p \in \Delta} \max_{q \in \Delta} p^{\mathsf{T}} M q$$

Q: how to solve a matrix game?

Q: how to solve a matrix game? A: LP

Q: how to solve a matrix game? A: LP

Theorem (Freund and Schapire 1999)

Instantiate a **no-regret** learning algorithm for each player. Then the average iterates converge to Nash equilibrium.

Q: how to solve a matrix game? A: LP

Theorem (Freund and Schapire 1999)

Instantiate a **no-regret** learning algorithm for each player. Then the average iterates converge to Nash equilibrium.

Many many refinements, e.g. [Rakhlin and Sridharan, 2013].

Q: how to solve a matrix game? A: LP

Theorem (Freund and Schapire 1999)

Instantiate a **no-regret** learning algorithm for each player. Then the average iterates converge to Nash equilibrium.

Many many refinements, e.g. [Rakhlin and Sridharan, 2013].

Q: what if second player doing something else (e.g. human)?

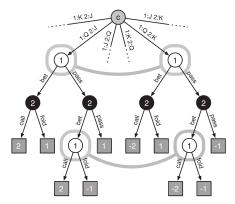
Outline

Introduction

- Question
- Self-Play in Matrix games

- Poker
- Go

Partial information game. Heads up limit hold'em version of Poker.



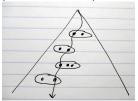
Bowling et al. [2015].

Solution [Bowling et al., 2015]

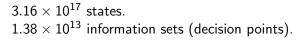
 3.16×10^{17} states. 1.38×10^{13} information sets (decision points).

Cepheus: Instantiate a no-regret learner for each information set.

Interact the hell out of it (900 core-years).



Solution [Bowling et al., 2015]



Cepheus: Instantiate a no-regret learner for each information set.

Interact the hell out of it (900 core-years).

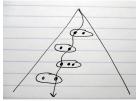
Able to compute sub-optimality of pair of strategies. \approx 0.

Solution [Bowling et al., 2015]

 3.16×10^{17} states. 1.38×10^{13} information sets (decision points).

Cepheus: Instantiate a no-regret learner for each information set.

Interact the hell out of it (900 core-years).



Able to compute sub-optimality of pair of strategies. \approx 0.

Many details (counterfactual regret minimisation, regret matching+, compression, no iterate averaging, \dots)

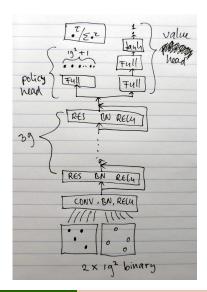
Full information. Number of states: 10¹⁷⁰ (Wikipedia)

Need to approximate / generalise.

AlphaGo Zero Birds eye view

- Starting from zero.
- Neural network f_{θ}
 - Input: board configuration
 - Output: move probabilities and value.
- Residual blocks of convolutional layers
- ReLU, batch normalisation.

AlphaGo Zero Network



$$\hat{\theta}(s) = (p, v)$$

ŧ

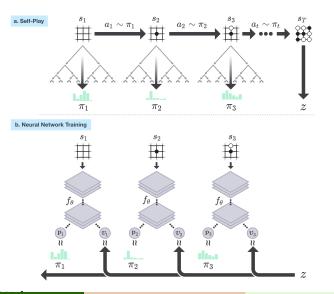
Koolen (CWI

YES X '19 12 / 25

Practice

Go

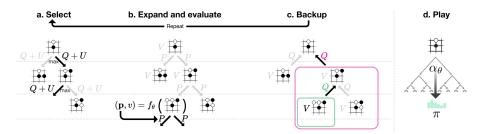
AlphaGo Zero Training



Koolen (CWI

YES X '19 13 / 25

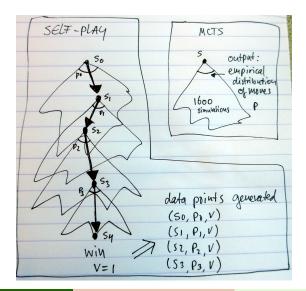
AlphaGo Zero MCTS



Practice

Go

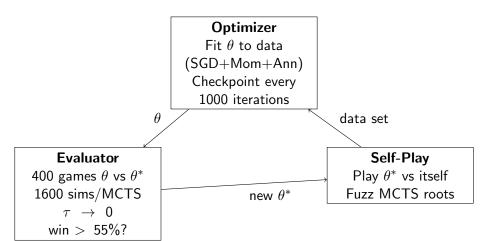
AlphaGo Zero MCTS



Koolen (CW

YES X '19 15 / 25

Training Pipeline



ractice

Go

Takeaways

- Strongest player (5185 Elo)
- No prior knowledge beyond rules of game.
- And choice of architecture/hyper-parameters. (see blog of Oracle team reimplementation)

Outline

Introduction

- Question
- Self-Play in Matrix games

2 Practice

- Poker
- Go

Setting

Main question

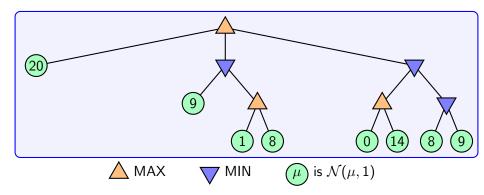
How should we allocate resources to learn fast (in games)?

Gross stylisation of Game Tree Search problem:

- Limited resources to think strategically.
- Some process to estimate value at "tractability horizon"
- Here we assume noisy estimates (modelling rollout estimates)

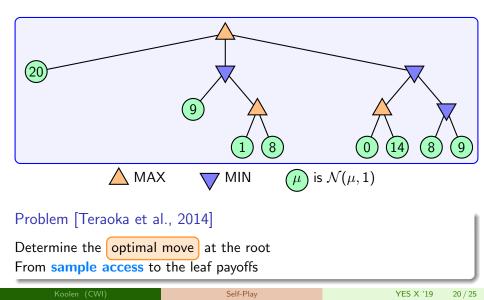
Theory

Challenge Environment: Stochastic Game Tree Search

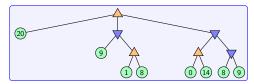


Theory

Challenge Environment: Stochastic Game Tree Search



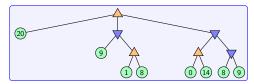
The Problem



Fix a game tree with payoff distributions in the leaves.

Optimal action at the root is a^* . Learning system sequentially takes samples and returns \hat{a} .

The Problem



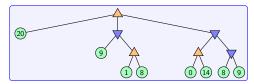
Fix a game tree with payoff distributions in the leaves.

Optimal action at the root is a^* . Learning system sequentially takes samples and returns \hat{a} .

Definition

Learner is δ -PAC when $\mathbb{P}(\hat{a} \neq a^*) \leq \delta$ for each instance.

The Problem



Fix a game tree with payoff distributions in the leaves.

Optimal action at the root is a^* . Learning system sequentially takes samples and returns \hat{a} .

Definition

Learner is δ -PAC when $\mathbb{P}(\hat{a} \neq a^*) \leq \delta$ for each instance.

Goal: among δ -PAC learners, minimise sample complexity.

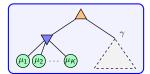
Note: active sequential multiple composite hypothesis test

Theor

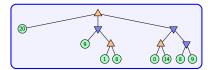
The Path Here

Best Arm Identification [Garivier and Kaufmann, 2016] Track-and-Stop

Depth 2 [Garivier et al., 2016] Sparsity in lower bd



Depth 1.5 [Kaufmann et al., 2018] Murphy Sampling



Any depth [Degenne and Koolen, 2019] Sticky Track-and-Stop

Lessons

- ∃ optimal allocation of effort among leaves [Castro, 2014, Garivier and Kaufmann, 2016].
- Often sparse.
- Convex program.
- Match with Track-and-Stop approach [Garivier and Kaufmann, 2016]
- Forced exploration ensures estimation.
- Discontinuity a real danger [Degenne and Koolen, 2019].
- Not hierarchical ???

Many questions remain open

- Practically efficient algorithms
- Remove forced exploration
- Moderate confidence $\delta \not\rightarrow 0$ regime [Simchowitz et al., 2017].
- Understand sparsity patterns
- Dynamically expanding horizon
- Active learning/testing beyond games

Thank you! And let's talk!