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Introduction Question

Main Question

Beyond supervised learning

What data should the learning system collect?

Active learning: query labels of instances. Learn good classifier.
Reinforcement learning: obtain rewards. Learn good policy.
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Introduction Question

This talk

Let’s look at deep neural networks in games.

Learning system decides which data are collected.

Here: self-play.
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Introduction Self-Play in Matrix games

Matrix game

Consider a two-player finite zero sum game.

M =
1 4

3 2

Goal: find Nash Equilibrium in mixed strategies (saddle point) witnessing
value.

V ∗ = min
p∈4

max
q∈4

pᵀMq
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Introduction Self-Play in Matrix games

Matrix game

Q: how to solve a matrix game?

A: LP

Theorem (Freund and Schapire 1999)

Instantiate a no-regret learning algorithm for each player.
Then the average iterates converge to Nash equilibrium.

Many many refinements, e.g. [Rakhlin and Sridharan, 2013].

Q: what if second player doing something else (e.g. human)?
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Practice Poker

Poker

Partial information game.
Heads up limit hold’em version of Poker.

Bowling et al. [2015].
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Practice Poker

Solution [Bowling et al., 2015]

3.16× 1017 states.
1.38× 1013 information sets (decision points).

Cepheus: Instantiate a no-regret learner for each information set.

Interact the hell out of it (900 core-years).

Able to compute sub-optimality of pair of strategies. ≈ 0.

Many details (counterfactual regret minimisation, regret matching+,
compression, no iterate averaging, . . . )
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Practice Go

Go

Full information.
Number of states: 10170 (Wikipedia)

Need to approximate / generalise.
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Practice Go

AlphaGo Zero Birds eye view

Starting from zero.

Neural network fθ
I Input: board configuration
I Output: move probabilities and value.

Residual blocks of convolutional layers

ReLU, batch normalisation.
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Practice Go

AlphaGo Zero Network

fθ(s) = (p, v)
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Practice Go

AlphaGo Zero Training

Silver et al. [2017]Koolen (CWI) Self-Play YES X ’19 13 / 25



Practice Go

AlphaGo Zero MCTS
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Practice Go

AlphaGo Zero MCTS
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Practice Go

Training Pipeline

Optimizer
Fit θ to data

(SGD+Mom+Ann)
Checkpoint every

1000 iterations

Evaluator
400 games θ vs θ∗

1600 sims/MCTS
τ → 0

win > 55%?

Self-Play
Play θ∗ vs itself

Fuzz MCTS roots

θ

new θ∗

data set
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Practice Go

Takeaways

Strongest player (5185 Elo)

No prior knowledge beyond rules of game.

And choice of architecture/hyper-parameters.
(see blog of Oracle team reimplementation)
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Theory

Setting

Main question

How should we allocate resources to learn fast (in games)?

Gross stylisation of Game Tree Search problem:

Limited resources to think strategically.

Some process to estimate value at “tractability horizon”

Here we assume noisy estimates (modelling rollout estimates)
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Theory

Challenge Environment: Stochastic Game Tree Search

20

9

1 8 0 14 8 9

MAX MIN µ is N (µ, 1)

Problem [Teraoka et al., 2014]

Determine the optimal move at the root

From sample access to the leaf payoffs
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Theory

The Problem

20

9

1 8 0 14 8 9

Fix a game tree with payoff distributions in the leaves.

Optimal action at the root is a∗. Learning system sequentially takes
samples and returns â.

Definition

Learner is δ-PAC when P(â 6= a∗) ≤ δ for each instance.

Goal: among δ-PAC learners, minimise sample complexity.

Note: active sequential multiple composite hypothesis test
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Theory

The Path Here

20 11 12 13 18 17 17 4

Best Arm Identification Depth 2
[Garivier and Kaufmann, 2016] [Garivier et al., 2016]

Track-and-Stop Sparsity in lower bd

µ1 µ2 . . . µK

γ 20

9

1 8 0 14 8 9

Depth 1.5 Any depth
[Kaufmann et al., 2018] [Degenne and Koolen, 2019]

Murphy Sampling Sticky Track-and-Stop
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Theory

Lessons

∃ optimal allocation of effort among leaves [Castro, 2014, Garivier
and Kaufmann, 2016].

Often sparse.

Convex program.

Match with Track-and-Stop approach [Garivier and Kaufmann, 2016]

Forced exploration ensures estimation.

Discontinuity a real danger [Degenne and Koolen, 2019].

Not hierarchical ???
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Theory

Many questions remain open

Practically efficient algorithms

Remove forced exploration

Moderate confidence δ 6→ 0 regime [Simchowitz et al., 2017].

Understand sparsity patterns

Dynamically expanding horizon

Active learning/testing beyond games
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Theory

Thank you! And let’s talk!
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