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Introduction

Menu

What is Pure Exploration?

Relation to Reinforcement Learning?

Why care?
I Pure Exploration problems occur as sub-problems in RL!
I Novel/interesting/powerful PE learning algorithms! “Fresh”

My focus: Pure Exploration Renaissance (2016)
1 Track-and-Stop algorithm for Best Arm Identification
2 BAI-MCTS approach for Game Tree Search
3 Murphy Sampling for Games Trees of “depth 1.5”
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Relation of RL and PE

Relation of RL and PE

Reinforcement Learning
MDP
Exploration/Exploitation
State

Regret minimisation
MAB
Exploration/Exploitation
No State

Best Arm Identification
MAB
Exploration only
No State

Pure Exploration
MAB + Structured Query
Exploration only
Structure
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Relation of RL and PE

Example 1: Phased Q-Learning

[Even-Dar, Mannor, and Mansour, 2002]

Early example(s) of Pure Exploration as sub-module in RL

Initialise V0(s) := 0 for each state s.
for phase i = 1, 2, . . . do

for each state s do
Run Best Arm Identification algorithm on

a 7→ r + γVi (s
′) where (r , s ′) ∼ P

(
r , s ′

∣∣s, a)
Store estimate in Vi+1(s).

end for
end for
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Relation of RL and PE

Example 2: AlphaZero

MCTS as Policy/Value Improvement Operator

Randomise network parameters θ1.
for iteration i = 1, 2, . . . do

for training games j = 1, 2, . . . do

πt result of MCTS from st with network θi
Store (s1, π1, z), . . . , (sT , πT , z).

end for
Train network θi+1 on stored data.

end for
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Pure Exploration Intro: Best Arm Identification Model

Formal model
max

Environment (Multi-armed bandit model)

K distributions parameterised by their means µ = (µ1, . . . , µK ).

The best arm is
i∗ = argmax

i∈[K ]
µi

Strategy

Stopping rule τ ∈ N
In round t ≤ τ sampling rule picks It ∈ [K ]. See Xt ∼ µIt .
Recommendation rule Î ∈ [K ].

Realisation of interaction: (I1,X1), . . . , (Iτ ,Xτ ), Î .

Two objectives: sample efficiency τ and correctness Î = i∗.
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Realisation of interaction: (I1,X1), . . . , (Iτ ,Xτ ), Î .
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Pure Exploration Intro: Best Arm Identification Model

Objective

On bandit µ, strategy (τ, (It)t , Î ) has

error probability Pµ
(
Î 6= i∗(µ)

)
, and

sample complexity Eµ[τ ].

Idea: constrain one, optimise the other.

Definition

Fix small confidence δ ∈ (0, 1). A strategy is δ-correct if

Pµ
(
Î 6= i∗(µ)

)
≤ δ for every bandit model µ.

(Generalisation: output ε-best arm)

Goal: minimise Eµ[τ ] over all δ-correct strategies.
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error probability Pµ
(
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Pure Exploration Intro: Best Arm Identification Model

Algorithms

Sampling rule It?

Stopping rule τ?

Recommendation rule Î?

Î = argmax
i∈[K ]

µ̂i (τ)

where µ̂(t) is empirical mean.
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Pure Exploration Intro: Best Arm Identification Sample Complexity Lower Bound

Instance-Dependent Sample Complexity Lower bound

Define the alternatives to µ by Alt(µ) = {λ|i∗(λ) 6= i∗(µ)}.

Theorem (Castro 2014, Garivier and Kaufmann 2016)

Fix a δ-correct strategy. Then for every bandit model µ

Eµ[τ ] ≥ T ∗(µ) ln
1

δ

where the characteristic time T ∗(µ) is given by

1

T ∗(µ)
= max

w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi‖λi ).

Intuition (going back to Lai and Robbins [1985]): if observations are likely
under both µ and λ, yet i∗(µ) 6= i∗(λ), then learner cannot stop and be
correct in both.
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Pure Exploration Intro: Best Arm Identification Sample Complexity Lower Bound

Example

K = 5 arms, Bernoulli µ = (0, 0.1, 0.2, 0.3, 0.4).

T ∗(µ) = 200.4 w∗(µ) = (0.45, 0.46, 0.06, 0.02, 0.01)

At δ = 0.05, the time gets multiplied by ln 1
δ = 3.0.
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Pure Exploration Intro: Best Arm Identification Algorithms

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with
optimal (oracle) proportions

w∗(µ) = argmax
w∈4K

min
λ∈Alt(µ)

K∑
i=1

wi KL(µi‖λi )

Track-and-Stop

Idea: draw It ∼ w∗(µ̂(t)).

Ensure µ̂(t)→ µ hence Ni (t)/t → w∗i by “forced exploration”

Draw arm with Ni (t)/t below w∗i (tracking)

Computation of w∗ (reduction to 1d line search)
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Pure Exploration Intro: Best Arm Identification Algorithms

All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)

For Track-and-Stop algorithm, for any bandit µ

lim sup
δ→0

Eµ [τ ]

ln 1
δ

= T ∗(µ)

Very similar optimality result for Top Two Thompson Sampling by
Russo [2016]. Here Ni (t)/t → w∗i result of posterior sampling.
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Game Tree Search

Challenge Environment: Stochastic Game Tree Search

9

18

12 16 18 6 14 6

MAX MIN µ is N (µ, 1)

Problem

Determine the optimal move at the root

From sample access to the leaf payoffs
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Model [Teraoka et al., 2014]

max

min

max

min

Maximin Action Identification Problem

Find best move at root from samples of leaves.

guarantee?
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Methods for Best Arm Identification

max

LUCB,
UGapE,
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Reduction of MCTS to BAI
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Reduction of MCTS to BAI

max

min
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Results

Correctness

(ε, δ)-PAC algorithms

Efficiency

Sample complexity function of leaf gaps ∆`

O

(∑
`∈L

1

∆2
` ∨ ε2

log

(
1

δ

))



Game Tree Search Confidence Intervals on Min/Max

How to build confidence intervals on min/max nodes

Children Max node

More principled approach in [Kaufmann, Koolen, and Garivier, 2018].
Many equal intervals ⇒ higher lower bound.
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Simplify

9 2 13 9 7 18 20 9

Best Arm Identification Depth 2
[Garivier and Kaufmann, 2016] [Garivier, Kaufmann, and Koolen, 2016]

Solved Open
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Simple Instance: Minimum Threshold Identification

µ1 µ2 . . . µK

γ

Fix threshold γ.

µ∗ := mini µi ≶ γ?
For t = 1, . . . , τ
• Pick leaf At

• See Xt ∼ µAt

Recommend m̂ ∈ {<,>}

Goal: fixed confidence Pµ {error} < δ
and small sample complexity Eµ[τ ]
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows
sample complexity for any δ-correct algorithm is at least

Eµ[τ ] ≥ T ∗(µ) ln 1
δ .

For our problem the characteristic time and oracle weights are

T ∗(µ) =


1

KL(µ∗, γ)
µ∗ < γ,∑

a

1

KL(µa, γ)
µ∗ > γ,

w∗a (µ) =


1a=a∗ µ∗ < γ,

1
KL(µa,γ)∑
j

1
KL(µj ,γ)

µ∗ > γ.
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Dichotomous Oracle Behaviour! Sampling Rule?

<

←
µ
→ γ

>

γ
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Sampling Rules

Lower Confidence Bounds
Play At = arg mina LCBa(t)

Thompson Sampling (Πt−1 is posterior after t − 1 rounds)

Sample θ ∼ Πt−1, then play At = arg mina θa.

new
Murphy Sampling condition on low minimum mean
Sample θ ∼ Πt−1 (·|mina θa < γ), then play At = arg mina θa.
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Intuition for Murphy Sampling

When µ∗ < γ conditioning is immaterial: θ ≈ µ and MS ≡ TS.

When µ∗ > γ conditioning results in θ ≈ (µ1, . . . , γ, . . . , µK ).
Index a lowered to γ with probability ∝ 1

KL(µa,γ) [Russo, 2016].
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Game Tree Search Game Trees of Depth 1.5 (Maximum/Minimum)

Murphy Sampling Rule [KKG, NIPS’18]

Theorem

Asymptotic optimality: Na(t)/t → w∗a (µ) for all µ

Sampling rule < >

Thompson Sampling
Lower Confidence Bounds
Murphy Sampling

Lemma

Any anytime sampling strategy (At)t ensuring
Nt
t → w∗(µ) and good

stopping rule τδ guarantee lim supδ→0
τδ

ln 1
δ

≤ T ∗(µ).
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Conclusion

Conclusion

Pure Exploration currently going through a renaissance

Instance-optimal identification algorithms
I Best Arm
I Game Tree Search
I . . .

Moving toward more complex queries. RL on the horizon . . .

Useful submodules

Thank you! And let’s talk!
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