A Pure Exploration perspective on Game Tree Search

Wouter M. Koolen

Delft, Monday 19th November, 2018

Menu

- What is Pure Exploration?
- Relation to Reinforcement Learning?
- Why care?
 - Pure Exploration problems occur as sub-problems in RL!
 - Novel/interesting/powerful PE learning algorithms! "Fresh"
- My focus: Pure Exploration Renaissance (2016)
 - Track-and-Stop algorithm for Best Arm Identification
 - 2 BAI-MCTS approach for Game Tree Search
 - Murphy Sampling for Games Trees of "depth 1.5"

- Introduction
- 2 Relation of RL and PE

Oure Exploration Intro: Best Arm Identification

- Model
- Sample Complexity Lower Bound
- Algorithms

Game Tree Search

- Game Trees of Arbitrary Depth
- Confidence Intervals on Min/Max
- Game Trees of Depth 1.5 (Maximum/Minimum)
 Results

Relation of RL and PE

Example 1: Phased Q-Learning

[Even-Dar, Mannor, and Mansour, 2002]

Early example(s) of Pure Exploration as sub-module in RL

```
Initialise V_0(s) := 0 for each state s.

for phase i = 1, 2, ... do

for each state s do

Run Best Arm Identification algorithm on

a \mapsto r + \gamma V_i(s') where (r, s') \sim \mathbb{P}(r, s'|s, a)

Store estimate in V_{i+1}(s).

end for

end for
```

Example 2: AlphaZero

MCTS as Policy/Value Improvement Operator

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. The **best arm** is

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. The **best arm** is

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. The **best arm** is

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- Recommendation rule $\hat{I} \in [K]$.

Realisation of interaction: $(I_1, X_1), \ldots, (I_{\tau}, X_{\tau}), \hat{I}$.

K distributions parameterised by their means $\mu = (\mu_1, \dots, \mu_K)$. The **best arm** is

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \mu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Realisation of interaction: $(I_1, X_1), \ldots, (I_{\tau}, X_{\tau}), \hat{I}$.

Two objectives: sample efficiency τ and correctness $\hat{l} = i^*$.

Koolen (CW

Objective

On bandit μ , strategy $(\tau, (I_t)_t, \hat{I})$ has • error probability $\mathbb{P}_{\mu}(\hat{I} \neq i^*(\mu))$, and

• sample complexity $\mathbb{E}_{\mu}[\tau]$.

Idea: constrain one, optimise the other.

Objective

On bandit μ , strategy $(\tau, (I_t)_t, \hat{I})$ has

- error probability $\mathbb{P}_{\boldsymbol{\mu}} (\hat{l} \neq i^*(\boldsymbol{\mu}))$, and
- sample complexity $\mathbb{E}_{\mu}[\tau]$.

Idea: constrain one, optimise the other.

Definition

Fix small confidence $\delta \in (0,1)$. A strategy is δ -correct if

 $\mathbb{P}_{\boldsymbol{\mu}}ig(\hat{l}
eq i^*(\boldsymbol{\mu})ig) \leq \delta$ for every bandit model $\boldsymbol{\mu}$.

(Generalisation: output ϵ -best arm)

Objective

On bandit μ , strategy $(\tau, (I_t)_t, \hat{I})$ has

- error probability $\mathbb{P}_{\mu}(\hat{l} \neq i^{*}(\mu))$, and
- sample complexity $\mathbb{E}_{\mu}[\tau]$.

Idea: constrain one, optimise the other.

Definition

Fix small confidence $\delta \in (0,1)$. A strategy is δ -correct if

 $\mathbb{P}_{\boldsymbol{\mu}}ig(\hat{l}
eq i^*(\boldsymbol{\mu})ig) \leq \delta$ for every bandit model $\boldsymbol{\mu}$.

(Generalisation: output ϵ -best arm)

Goal: minimise $\mathbb{E}_{\mu}[\tau]$ over all δ -correct strategies.

Model

Algorithms

- Sampling rule I_t ?
- Stopping rule τ ?
- Recommendation rule \hat{I} ?

$$\hat{l} = \mathop{\mathrm{argmax}}_{i \in [K]} \hat{\mu}_i(au)$$

where $\hat{\mu}(t)$ is **empirical mean**.

Instance-Dependent Sample Complexity Lower bound

Define the alternatives to μ by $Alt(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}.$

Instance-Dependent Sample Complexity Lower bound

Define the alternatives to μ by $Alt(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}.$

Theorem (Castro 2014, Garivier and Kaufmann 2016) Fix a δ -correct strategy. Then for every bandit model μ

$$\mathbb{E}_{oldsymbol{\mu}}[au] \; \geq \; \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{\mathcal{T}^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \Delta_K} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^K w_i \mathsf{KL}(\mu_i \| \lambda_i).$$

Instance-Dependent Sample Complexity Lower bound

Define the **alternatives** to μ by $Alt(\mu) = \{\lambda | i^*(\lambda) \neq i^*(\mu)\}.$

Theorem (Castro 2014, Garivier and Kaufmann 2016) Fix a δ -correct strategy. Then for every bandit model μ

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta}$$

where the characteristic time $T^*(\mu)$ is given by

$$\frac{1}{T^*(\boldsymbol{\mu})} = \max_{\boldsymbol{w} \in \Delta_K} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\mu})} \sum_{i=1}^K w_i \mathsf{KL}(\mu_i \| \lambda_i).$$

Intuition (going back to Lai and Robbins [1985]): if observations are likely under both μ and λ , yet $i^*(\mu) \neq i^*(\lambda)$, then learner cannot stop and be correct in both.

Koolen (CWI

Example

K = 5 arms, Bernoulli $\mu = (0, 0.1, 0.2, 0.3, 0.4)$.

$$T^*(\mu) = 200.4$$
 $w^*(\mu) = (0.45, 0.46, 0.06, 0.02, 0.01)$

At $\delta = 0.05$, the time gets multiplied by $\ln \frac{1}{\delta} = 3.0$.

Sampling Rule

Look at the lower bound again. Any good algorithm **must** sample with optimal (**oracle**) proportions

$$m{w}^*(m{\mu}) \;=\; rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in \mathsf{Alt}(m{\mu})} \; \sum_{i=1}^K w_i \, \mathsf{KL}(\mu_i \| \lambda_i)$$

Sampling Rule

Look at the lower bound again. Any good algorithm **must** sample with optimal (**oracle**) proportions

$$w^*(\mu) = rgmax_{oldsymbol{w}\in riangle_K} \min_{oldsymbol{\lambda}\in \mathsf{Alt}(\mu)} \sum_{i=1}^K w_i \, \mathsf{KL}(\mu_i \| \lambda_i)$$

Track-and-Stop

Idea: draw $I_t \sim w^*(\hat{\mu}(t))$.

- Ensure $\hat{\mu}(t)
 ightarrow \mu$ hence $N_i(t)/t
 ightarrow w_i^*$ by "forced exploration"
- Draw arm with $N_i(t)/t$ below w_i^* (tracking)
- Computation of w^* (reduction to 1d line search)

All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)

For Track-and-Stop algorithm, for any bandit μ

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\ln \frac{1}{\delta}} = T^{*}(\mu)$$

All in all

Final result: lower and upper bound meet on every problem instance.

Theorem (Garivier and Kaufmann 2016)

For Track-and-Stop algorithm, for any bandit μ

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\mu}[\tau]}{\ln \frac{1}{\delta}} = T^{*}(\mu)$$

Very similar optimality result for **Top Two Thompson Sampling** by Russo [2016]. Here $N_i(t)/t \rightarrow w_i^*$ result of posterior sampling.

2 Relation of RL and PE

Oure Exploration Intro: Best Arm Identification

- Model
- Sample Complexity Lower Bound
- Algorithms

Game Tree Search

- Game Trees of Arbitrary Depth
- Confidence Intervals on Min/Max
- Game Trees of Depth 1.5 (Maximum/Minimum)
 Results

Challenge Environment: Stochastic Game Tree Search

Challenge Environment: Stochastic Game Tree Search

Model [Teraoka et al., 2014]

Maximin Action Identification Problem

Find best move at root from samples of leaves.

Model [Teraoka et al., 2014]

Maximin Action Identification Problem Find **best move at root** from samples of **leaves**.

Methods for Best Arm Identification

Methods for Best Arm Identification

. . .

Methods for Best Arm Identification

LUCB, UGapE,

. . .

Correctness (ϵ, δ) -PAC algorithms

Efficiency

Sample complexity function of leaf gaps Δ_ℓ

$$O\left(\sum_{\ell \in \mathcal{L}} \frac{1}{\Delta_\ell^2 \vee \epsilon^2} \log\left(\frac{1}{\delta}\right)\right)$$

How to build confidence intervals on min/max nodes

How to build confidence intervals on min/max nodes

More principled approach in [Kaufmann, Koolen, and Garivier, 2018]. Many equal intervals \Rightarrow higher lower bound.

2 Relation of RL and PE

Oure Exploration Intro: Best Arm Identification

- Model
- Sample Complexity Lower Bound
- Algorithms

Game Tree Search

- Game Trees of Arbitrary Depth
- Confidence Intervals on Min/Max
- Game Trees of Depth 1.5 (Maximum/Minimum)
 Results

Simplify

Best Arm Identification [Garivier and Kaufmann, 2016] Solved Depth 2 [Garivier, Kaufmann, and Koolen, 2016] Open

Simple Instance: Minimum Threshold Identification

Fix threshold γ .

For
$$t = 1, \ldots, \tau$$

- Pick leaf A_t
- See $X_t \sim \mu_{A_t}$

Recommend $\hat{m} \in \{<,>\}$

Goal: fixed confidence \mathbb{P}_{μ} {error} $< \delta$ and small sample complexity $\mathbb{E}_{\mu}[\tau]$

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ -correct algorithm is at least

 $\mathbb{E}_{\mu}[\tau] \geq T^{*}(\mu) \ln \frac{1}{\delta}.$

Lower Bound

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016] shows sample complexity for any δ -correct algorithm is at least

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \geq \ T^*(oldsymbol{\mu}) \ln rac{1}{\delta}.$$

For our problem the characteristic time and oracle weights are

$$T^{*}(\boldsymbol{\mu}) = \begin{cases} \frac{1}{\mathsf{KL}(\boldsymbol{\mu}^{*},\boldsymbol{\gamma})} & \boldsymbol{\mu}^{*} < \boldsymbol{\gamma}, \\ \sum_{a} \frac{1}{\mathsf{KL}(\boldsymbol{\mu}_{a},\boldsymbol{\gamma})} & \boldsymbol{\mu}^{*} > \boldsymbol{\gamma}, \end{cases} \quad \mathbf{w}^{*}_{a}(\boldsymbol{\mu}) = \begin{cases} \mathbf{1}_{a=a^{*}} & \boldsymbol{\mu}^{*} < \boldsymbol{\gamma}, \\ \frac{1}{\mathsf{KL}(\boldsymbol{\mu}_{a},\boldsymbol{\gamma})} & \frac{1}{\mathsf{KL}(\boldsymbol{\mu}_{j},\boldsymbol{\gamma})} & \boldsymbol{\mu}^{*} > \boldsymbol{\gamma}. \end{cases}$$

Dichotomous Oracle Behaviour! Sampling Rule?

Sampling Rules

- Lower Confidence Bounds Play $A_t = \arg \min_a \operatorname{LCB}_a(t)$
- **Thompson Sampling** (Π_{t-1} is posterior after t-1 rounds) Sample $\theta \sim \Pi_{t-1}$, then play $A_t = \arg \min_a \theta_a$.
- Murphy Sampling condition on low minimum mean Sample $\theta \sim \prod_{t=1} (\cdot |\min_a \theta_a < \gamma)$, then play $A_t = \arg \min_a \theta_a$.

Intuition for Murphy Sampling

- When $\mu^* < \gamma$ conditioning is immaterial: $\theta \approx \mu$ and MS \equiv TS.
- When μ* > γ conditioning results in θ ≈ (μ₁,..., γ,..., μ_K). Index a lowered to γ with probability ∝ ¹/_{KL(μ₂,γ)} [Russo, 2016].

Murphy Sampling Rule [KKG, NIPS'18]

Theorem

Asymptotic optimality: $N_{\mathsf{a}}(t)/t o w^*_{\mathsf{a}}(\mu)$ for all μ

Sampling rule	\leq	\geq
Thompson Sampling	\checkmark	×
Lower Confidence Bounds	×	\checkmark
Murphy Sampling	\checkmark	\checkmark

Lemma

Any anytime sampling strategy $(A_t)_t$ ensuring $\frac{N_t}{t} \to \boldsymbol{w}^*(\boldsymbol{\mu})$ and good stopping rule τ_{δ} guarantee $\limsup_{\delta \to 0} \frac{\tau_{\delta}}{\ln \frac{1}{\lambda}} \leq T^*(\boldsymbol{\mu})$.

Conclusion

- Pure Exploration currently going through a renaissance
- Instance-optimal identification algorithms
 - Best Arm
 - Game Tree Search
 - ▶ ...
- Moving toward more complex queries. RL on the horizon
- Useful submodules

Conclusion

- Pure Exploration currently going through a renaissance
- Instance-optimal identification algorithms
 - Best Arm
 - Game Tree Search
 - ▶ ...
- Moving toward more complex queries. RL on the horizon
- Useful submodules

Thank you! And let's talk!