Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search

Wouter M. Koolen
CWI

Machine Learning and Statistics for Structures
Friday $23^{\text {rd }}$ February, 2018

Outline

(1) Intro
(2) Model
(3) Statistician's toolbox

4 Sample Complexity Lower Bound
(5) Algorithms
(6) Extensions

Question

Complexity of interactive learning.

Question

Complexity of interactive learning.

- Medical testing [Villar et al., 2015]
- Online advertising and website optimisation [Zhou et al., 2014]
- Monte Carlo planning [Grill et al., 2016], and
- Game-playing AI [Silver et al., 2016]

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Method

- statistical experiments in physical or simulated environment, interactively and adaptively.

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Method

- statistical experiments in physical or simulated environment, interactively and adaptively.
Main scientific questions:
- sample complexity of interactive learning \# experiments as function of query structure and environment
- Design of efficient pure exploration systems

Outline

(1) Intro
(2) Model
(3) Statistician's toolbox

4 Sample Complexity Lower Bound
(5) Algorithms
(6) Extensions

Formal model

Environment (Multi-armed bandit model)

K distributions ν_{1}, \ldots, ν_{K} with means μ_{1}, \ldots, μ_{K}.
Best arm

$$
i^{*}=\underset{i \in[K]}{\operatorname{argmax}} \mu_{i}
$$

Formal model

Environment (Multi-armed bandit model)

K distributions ν_{1}, \ldots, ν_{K} with means μ_{1}, \ldots, μ_{K}.
Best arm

$$
i^{*}=\underset{i \in[K]}{\operatorname{argmax}} \mu_{i}
$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_{t} \in[K]$. See $X_{t} \sim \nu_{l_{t}}$.
- Recommendation rule $\hat{I} \in[K]$.

Formal model

Environment (Multi-armed bandit model)

K distributions ν_{1}, \ldots, ν_{K} with means μ_{1}, \ldots, μ_{K}.
Best arm

$$
i^{*}=\underset{i \in[K]}{\operatorname{argmax}} \mu_{i}
$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_{t} \in[K]$. See $X_{t} \sim \nu_{l_{t}}$.
- Recommendation rule $\hat{I} \in[K]$.

Realisation of interaction: $\left(I_{1}, X_{1}\right), \ldots,\left(I_{\tau}, X_{\tau}\right), \hat{l}$.

Formal model

Environment (Multi-armed bandit model)

K distributions ν_{1}, \ldots, ν_{K} with means μ_{1}, \ldots, μ_{K}.
Best arm

$$
i^{*}=\underset{i \in[K]}{\operatorname{argmax}} \mu_{i}
$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_{t} \in[K]$. See $X_{t} \sim \nu_{I_{t}}$.
- Recommendation rule $\hat{I} \in[K]$.

Realisation of interaction: $\left(I_{1}, X_{1}\right), \ldots,\left(I_{\tau}, X_{\tau}\right), \hat{l}$.
Two objectives: sample efficiency τ and correctness $\hat{I}=i^{*}$.

Objective

Two main flavours:

- fixed budget : fix $\tau=T$, optimise $\mathbb{P}\left(\hat{l}=i^{*}\right)$
- fixed confidence : fix $\mathbb{P}\left(\hat{l}=i^{*}\right) \leq \delta$, optimise $\mathbb{E}[\tau]$.

Objective

Two main flavours:

- fixed budget : fix $\tau=T$, optimise $\mathbb{P}\left(\hat{l}=i^{*}\right)$
- fixed confidence : fix $\mathbb{P}\left(\hat{l}=i^{*}\right) \leq \delta$, optimise $\mathbb{E}[\tau]$.

Notation

$$
N_{i}(t)=\sum_{s=1}^{t} \mathbf{1}\left\{I_{s}=i\right\} \quad \text { and } \quad \hat{\mu}_{i}(t)=\frac{1}{N_{i}(t)} \sum_{s=1}^{t} X_{s} \mathbf{1}\left\{I_{s}=i\right\}
$$

Outline

(1) Intro

(2) Model
(3) Statistician's toolbox

4 Sample Complexity Lower Bound
(5) Algorithms
(6) Extensions

A statistician's view

Active Sequential Multiple Composite Hypothesis Testing

$$
\mathcal{H}_{i}=\left\{\boldsymbol{\nu} \mid i^{*}(\boldsymbol{\nu})=i\right\} \quad i \in[K]
$$

(Frequentist) uniform type 1 error control.

Families of approaches to BAI

- Upper and Lower confidence bounds [Bubeck et al., 2011, Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann and Kalyanakrishnan, 2013, Jamieson et al., 2014],
- Racing or Successive Rejects/Eliminations [Maron and Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010, Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013],
- Thompson Sampling [Russo, 2016] (hemidemisemiBayesian)
- Track-and-Stop [Garivier and Kaufmann, 2016].

Outline

(1) Intro

(2) Model
(3) Statistician's toolbox

4 Sample Complexity Lower Bound
(5) Algorithms
(6) Extensions

Change of Measure

If the observations are likely under both $\boldsymbol{\nu}$ and $\boldsymbol{\lambda}$, yet $i^{*}(\boldsymbol{\nu}) \neq i^{*}(\boldsymbol{\lambda})$, then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016])

For bandit models $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$, stopping time τ, and event $\mathcal{E} \in \mathcal{F}_{\tau}$,

$$
\sum_{i=1}^{K} \underset{\nu}{\mathbb{E}}\left[N_{i}(\tau)\right] \operatorname{KL}\left(\nu_{i} \| \lambda_{i}\right) \geq d\left(\mathbb{P}_{\nu}(\mathcal{E}), \mathbb{P}_{\boldsymbol{\lambda}}(\mathcal{E})\right)
$$

Change of Measure

If the observations are likely under both $\boldsymbol{\nu}$ and $\boldsymbol{\lambda}$, yet $i^{*}(\boldsymbol{\nu}) \neq i^{*}(\boldsymbol{\lambda})$, then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016])

For bandit models $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$, stopping time τ, and event $\mathcal{E} \in \mathcal{F}_{\tau}$,

$$
\sum_{i=1}^{K} \underset{\nu}{\mathbb{E}}\left[N_{i}(\tau)\right] \operatorname{KL}\left(\nu_{i} \| \lambda_{i}\right) \geq d\left(\mathbb{P}_{\boldsymbol{\nu}}(\mathcal{E}), \mathbb{P}_{\boldsymbol{\lambda}}(\mathcal{E})\right)
$$

Theorem (Garivier and Kaufmann [2016])

Let $\boldsymbol{\mu}$ and $\boldsymbol{\lambda}$ be bandit models with $i^{*}(\boldsymbol{\nu}) \neq i^{*}(\boldsymbol{\lambda})$. Then for any δ-correct algorithm

$$
\sum_{i=1}^{K} \underset{\nu}{\mathbb{E}}\left[N_{i}(\tau)\right] \operatorname{KL}\left(\nu_{i} \| \lambda_{i}\right) \geq d(\delta, 1-\delta)
$$

Sample Complexity Consequence

Starting point:

$$
\underset{\nu}{\mathbb{E}}[\tau] \sum_{i=1}^{K} \frac{\mathbb{E}_{\nu}\left[N_{i}(\tau)\right]}{\mathbb{E}_{\nu}[\tau]} \mathrm{KL}\left(\nu_{i} \| \lambda_{i}\right) \geq d(\delta, 1-\delta)
$$

hence

$$
\underset{\nu}{\mathbb{E}}[\tau] \max _{w \in \Delta_{K}} \min _{\lambda \in \operatorname{Alt}(\nu)} \sum_{i=1}^{K} w_{i} \mathrm{KL}\left(\nu_{i} \| \lambda_{i}\right) \geq d(\delta, 1-\delta)
$$

So

Theorem (Garivier and Kaufmann [2016])

$$
\underset{\nu}{\mathbb{E}}[\tau] \geq T^{*}(\nu) d(\delta, 1-\delta)
$$

where

$$
\frac{1}{T^{*}(\boldsymbol{\nu})}=\max _{\boldsymbol{w} \in \triangle_{K}} \min _{\boldsymbol{\lambda} \in A l t(\boldsymbol{\nu})} \sum_{i=1}^{K} w_{i} \mathrm{KL}\left(\nu_{i} \| \lambda_{i}\right)
$$

Example

$K=5 \mathrm{arms}, \boldsymbol{\mu}=(.3, .4, .5, .6, .7)$.
Bernoulli

$$
T^{*}(\boldsymbol{\mu})=203.4
$$

Gaussian ($\sigma^{2}=1$)

$$
T^{*}(\boldsymbol{\mu})=893.5
$$

Outline

(1) Intro
(2) Model
(3) Statistician's toolbox

4 Sample Complexity Lower Bound
(5) Algorithms
(6) Extensions

Algorithms

- Sampling rule ?
- Stopping rule ?
- Recommendation rule ?

$$
\hat{\imath}=\underset{i \in[K]}{\operatorname{argmax}} \hat{\mu}_{i}(\tau)
$$

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal proportions

$$
\boldsymbol{w}^{*}(\boldsymbol{\nu})=\underset{\boldsymbol{w} \in \Delta_{K}}{\operatorname{argmax}} \min _{\boldsymbol{\lambda} \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{i=1}^{K} w_{i} \mathrm{KL}\left(\nu_{i} \| \lambda_{i}\right)
$$

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal proportions

$$
\boldsymbol{w}^{*}(\boldsymbol{\nu})=\underset{\boldsymbol{w} \in \Delta_{K}}{\operatorname{argmax}} \min _{\lambda \in \operatorname{Alt}(\boldsymbol{\nu})} \sum_{i=1}^{K} w_{i} \mathrm{KL}\left(\nu_{i} \| \lambda_{i}\right)
$$

Idea: draw $I_{t} \sim \boldsymbol{w}^{*}(\hat{\boldsymbol{\mu}}(t))$.

- Ensure $N_{i}(t) / t \rightarrow w_{i}^{*}$ by "forced exploration"
- Draw arm with $N_{i}(t) / t$ below w_{i}^{*} (tracking)
- Computation

Stopping Rule

When do we have enough evidence to stop?
Generalized Likelihood Ratio Test (GLRT)

$$
Z_{t}=\ln \frac{P_{\hat{\mu}(t)}(\text { data })}{\max _{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(\text { data })}
$$

Stopping Rule

When do we have enough evidence to stop?
Generalized Likelihood Ratio Test (GLRT)

$$
Z_{t}=\ln \frac{P_{\hat{\mu}(t)}(\text { data })}{\max _{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(\text { data })}
$$

Turns out, GLRT statistic equals

$$
Z_{t}=\min _{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} \sum_{i=1}^{K} N_{i}(t) \operatorname{KL}\left(\hat{\mu}_{i}(t) \| \lambda_{i}\right)
$$

i.e. lower bound with $\hat{\mu}(t)$ plug-in.

Stopping Rule

When do we have enough evidence to stop?
Generalized Likelihood Ratio Test (GLRT)

$$
Z_{t}=\ln \frac{P_{\hat{\mu}(t)}(\text { data })}{\max _{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(\text { data })}
$$

Turns out, GLRT statistic equals

$$
Z_{t}=\min _{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} \sum_{i=1}^{K} N_{i}(t) \operatorname{KL}\left(\hat{\mu}_{i}(t) \| \lambda_{i}\right)
$$

i.e. lower bound with $\hat{\mu}(t)$ plug-in.

Roughly: stop when $Z_{t} \geq \ln \frac{1}{\delta}$. Make precise with careful universal coding (MDL) argument.

All in all

Final result: for Track-and-Stop algorithms

$$
\lim \sup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau]}{\ln \frac{1}{\delta}}=T^{*}(\boldsymbol{\mu})
$$

Very similar optimality result for Top Two Thompson Sampling by Russo [2016]

Outline

(1) Intro
(2) Model
(3) Statistician's toolbox

4 Sample Complexity Lower Bound
(5) Algorithms
(6) Extensions

Beyond asymptotic bounds

Okay, so good algorithms have

$$
\underset{\mu}{\mathbb{E}}[\tau] \leq T^{*}(\boldsymbol{\mu}) \ln \frac{1}{\delta}+\text { small }
$$

What about lower-order terms? "Moderate confidence" regime!

- Dependence on $\ln \ln \frac{1}{\delta}$
- Dependence on $\ln K$.
[Simchowitz et al., 2017, Chen et al., 2017b]

Beyond Best Arm

Practical and fundamental question: solving more complex pure exploration problems.

Combinatorial Pure Exploration

- Best k-set
- Shortest path
- Spanning tree
- ...

Combinatorial Pure Exploration

- Best k-set
- Shortest path
- Spanning tree
- ...

Combinatorial collection \mathcal{F} of subsets of $[K]$.

$$
i^{*}=i^{*}(\boldsymbol{\nu})=\underset{S \in \mathcal{F}}{\operatorname{argmax}} \sum_{i \in S} \mu_{i}
$$

[Chen et al., 2017a]
Track-and-stop-like algorithms. Can compute lower bound. Dense.

Game Tree Search

Goal: find maximin action

$$
i^{*}:=\arg \max _{i} \min _{j} \mu_{i, j}
$$

Sparsity in the Lower Bound (depth 2)

Kaufmann and Koolen [2017]

Sparsity Pattern

Oracle weights \boldsymbol{w}^{*} supported on only 7 of the 13 leaves.

Open problem: algorithms incorporating appropriate pruning?

Sparsity in the Lower Bound (depth 3)

oracle weights $\boldsymbol{w}^{*}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ as a function of μ_{3} for $\boldsymbol{\mu}=\left(16,5, \mu_{3}, 0\right)$

It's complicated. But not intractable.

Conclusion

Pure Exploration is an interesting, hot, promising area.

