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Complexity of interactive learning.

Medical testing [Villar et al., 2015]

Online advertising and website optimisation [Zhou et al., 2014]
Monte Carlo planning [Grill et al., 2016], and

Game-playing Al [Silver et al., 2016]
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Pure Exploration

Query: Which is ...
e the most effective drug dose?
e the most appealing website layout?
o the safest next robot action?
Method

@ statistical experiments in physical or simulated environment,
interactively and adaptively.

Main scientific questions:

e sample complexity of interactive learning
# experiments as function of query structure and environment

@ Design of efficient pure exploration systems
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Formal model

Environment (Multi-armed bandit model)

K distributions v1, ..., vk with means pq, ..., k.

Best arm

i* = argmax u;

i€[K]
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Formal model

Environment (Multi-armed bandit model)

K distributions v1, ..., vk with means pq, ..., k.
Best arm
i* = argmax pu;
i€[K]

Strategy

o Stopping rule 7 € N
@ In round t < 7 sampling rule picks /; € [K]. See X; ~ vj,.

o Recommendation rule | € [K].

Realisation of interaction: (l, X1),..., (I, X;), I

Two objectives: sample efficiency 7 and correctness | = i*.



Objective

Two main flavours:
o fixed budget : fix 7 = T, optimise P(/ = i*)
o fixed confidence : fix P(/ = i*) < §, optimise E[7].



Objective

Two main flavours:
o fixed budget : fix 7 = T, optimise P(/ = i*)
o fixed confidence : fix P(/ = i*) < §, optimise E[7].

Notation

Ni(t) = Y 1{lk=i} and  pi(t) = Nll(t)szl{/ =i}
s=1 ! s=1
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A statistician’s view

Active Sequential Multiple Composite Hypothesis Testing
Hi = {v|i"(v)=i} i€ [K]

(Frequentist) uniform type 1 error control.



Families of approaches to BAI

e Upper and Lower confidence bounds [Bubeck et al., 2011,
Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann
and Kalyanakrishnan, 2013, Jamieson et al., 2014],

e Racing or Successive Rejects/Eliminations [Maron and
Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010,
Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013],

e Thompson Sampling [Russo, 2016] (hemidemisemiBayesian)

e Track-and-Stop [Garivier and Kaufmann, 2016].
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Change of Measure

If the observations are likely under both v and A, yet
i*(v) # i*(A), then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016])

For bandit models p and X, stopping time 7, and event £ € F,

K
Y _EN(DIKLwilX) > d (Bu(E),PA(E))
i=1




Change of Measure

If the observations are likely under both v and A, yet
i*(v) # i*(A), then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016])

For bandit models p and X, stopping time 7, and event £ € F,

K
Z E[N(T]KL(wil[A)) = d (Pu(€), PA(E))

Theorem (Garivier and Kaufmann [2016])

Let p and X be bandit models with i*(v) # i*(X). Then for any
d-correct algorithm

Z]E[N N KL(vi|[A) > d(6,1—0)




Sample Complexity Consequence
Starting point:

E[]ZEE[NH KLOAIA) > d(5.1-0)

hence

K
. AI) > —
E[T]wr‘ganKAerglltrz ) E_;W KL(vi||\) > d(6,1—0)

Theorem (Garivier and Kaufmann [2016])

Elr] > T*(v)d(5,1-0)

where

K
= i i KL(vj|| A
Tw) T Rl kL)




Example

K =5 arms, p = (.3, .4,.5,.6,.7).

Bernoulli
T*(pn) = 203.4

Gaussian (02 = 1)
T*() = 893.5
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Algorithms

@ Sampling rule ?
@ Stopping rule ?
@ Recommendation rule ?

I = argmax [i;(7)
i€[K]



Sampling Rule
Look at the lower bound again. Any good algorithm must sample
with optimal proportions

K
w*(v) = argmax min w; KL(v; ||\
) = argmax min | > wiKLEA)



Sampling Rule

Look at the lower bound again. Any good algorithm must sample
with optimal proportions

K
w*(v) = argmax min w; KL(v; ||\
) = argmax min | > wiKLEA)

Idea: draw Iy ~ w*(fu(t)).
e Ensure Ni(t)/t — w by “forced exploration”
e Draw arm with N;(t)/t below w} (tracking)

o Computation



Stopping Rule

When do we have enough evidence to stop?
Generalized Likelihood Ratio Test (GLRT)

Pie) (data)

Zy = In
' maxcait(a(t)) Pa(data)
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Stopping Rule

When do we have enough evidence to stop?
Generalized Likelihood Ratio Test (GLRT)

Pj(¢)(data)
maxcai(a(t)) Px(data)

Zt: In

Turns out, GLRT statistic equals

Z N;(t) KL(zi(t)|| i
P = o min Z: (Ai(t) A7)
i.e. lower bound with fi(t) plug-in.

Roughly: stop when Z; > In %. Make precise with careful universal
coding (MDL) argument.



All'in all

Final result: for Track-and-Stop algorithms

E
lim sup —£ 7]
d—0 Ins

= T(n)

Very similar optimality result for Top Two Thompson Sampling
by Russo [2016]
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Beyond asymptotic bounds

Okay, so good algorithms have

1
IE[T] < T*(u)lng+small.

What about lower-order terms? “Moderate confidence” regime!
@ Dependence on In In%
@ Dependence on In K.

[Simchowitz et al., 2017, Chen et al., 2017b]



Beyond Best Arm

Practical and fundamental question: solving more complex pure
exploration problems.

Pure Exploration Problems

general

Combinatorial Pure
Exploration

max-sum

J
Fully Dense Fixed Sparsity Variable Sparsity




Combinatorial Pure Exploration
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Shortest path

Spanning tree



Combinatorial Pure Exploration

Best k-set
Shortest path

Spanning tree

Combinatorial collection F of subsets of [K].

it = i"(v) = argmaxz L.

SeF ics

[Chen et al., 20174]
Track-and-stop-like algorithms. Can compute lower bound. Dense.



Game Tree Search

min min

1 2 1 2
11 1,2 12,1 12,2

Goal: find maximin action

i* = argmaxmin
i



Sparsity in the Lower Bound (depth 2)

Kaufmann and Koolen [2017]

Sparsity Pattern

max

o000 ® OO0 @000 ® O

Oracle weights w™ supported on only 7 of the 13 leaves.

Open problem: algorithms incorporating appropriate pruning?



Sparsity in the Lower Bound (depth 3)

max
0.6
: @
min So4F
§> —w,
s W
g 0.2 ¢ w2 1
max = 8
5 ——
o ‘
3.5 4 4.5
M1 p2 M3 Ha I

oracle weights w* = (wy, wp, w3, wy) as a function of u3 for
r = (167 5, us, O)

It's complicated. But not intractable.



Conclusion

Pure Exploration is an interesting, hot, promising area.

Pure Exploration Problems

general

Combinatorial Pure
Exploration

max-sum

J
Fully Dense Fixed Sparsity Variable Sparsity
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