Bandit Algorithms for Pure Exploration: Best Arm Identification and Game Tree Search

Machine Learning and Statistics for Structures Friday 23rd February, 2018 Outline

3 Statistician's toolbox

4 Sample Complexity Lower Bound

5 Algorithms

6 Extensions

Complexity of interactive learning.

Question

Complexity of interactive learning.

- Medical testing [Villar et al., 2015]
- Online advertising and website optimisation [Zhou et al., 2014]
- Monte Carlo planning [Grill et al., 2016], and
- Game-playing AI [Silver et al., 2016]

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Method

• statistical experiments in physical or simulated environment, interactively and adaptively.

Pure Exploration

Query: Which is ...

- the most effective drug dose?
- the most appealing website layout?
- the safest next robot action?

Method

• statistical experiments in physical or simulated environment, interactively and adaptively.

Main scientific questions:

- sample complexity of interactive learning
 # experiments as function of query structure and environment
- Design of efficient pure exploration systems

Outline

3 Statistician's toolbox

4 Sample Complexity Lower Bound

5 Algorithms

6 Extensions

Environment (Multi-armed bandit model)

K distributions ν_1, \ldots, ν_K with means μ_1, \ldots, μ_K . Best arm

$$i^* = rgmax \mu_i$$

 $i \in [K]$

Environment (Multi-armed bandit model)

K distributions ν_1, \ldots, ν_K with means μ_1, \ldots, μ_K . Best arm

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \nu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Environment (Multi-armed bandit model)

K distributions ν_1, \ldots, ν_K with means μ_1, \ldots, μ_K . Best arm

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \nu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Realisation of interaction: $(I_1, X_1), \ldots, (I_{\tau}, X_{\tau}), \hat{I}$.

Environment (Multi-armed bandit model)

K distributions ν_1, \ldots, ν_K with means μ_1, \ldots, μ_K . Best arm

$$i^* = \underset{i \in [K]}{\operatorname{argmax}} \mu_i$$

Strategy

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \leq \tau$ sampling rule picks $I_t \in [K]$. See $X_t \sim \nu_{I_t}$.
- Recommendation rule $\hat{l} \in [K]$.

Realisation of interaction: $(I_1, X_1), \ldots, (I_{\tau}, X_{\tau}), \hat{I}$.

Two objectives: sample efficiency τ and correctness $\hat{l} = i^*$.

Objective

Two main flavours:

- fixed budget : fix $\tau = T$, optimise $\mathbb{P}(\hat{l} = i^*)$
- fixed confidence : fix $\mathbb{P}(\hat{l} = i^*) \leq \delta$, optimise $\mathbb{E}[\tau]$.

Objective

Two main flavours:

- fixed budget : fix $\tau = T$, optimise $\mathbb{P}(\hat{l} = i^*)$
- fixed confidence : fix $\mathbb{P}(\hat{l} = i^*) \leq \delta$, optimise $\mathbb{E}[\tau]$.

Notation

$$N_i(t) = \sum_{s=1}^t \mathbf{1} \{ I_s = i \}$$
 and $\hat{\mu}_i(t) = \frac{1}{N_i(t)} \sum_{s=1}^t X_s \mathbf{1} \{ I_s = i \}$

Outline

4 Sample Complexity Lower Bound

5 Algorithms

6 Extensions

A statistician's view

Active Sequential Multiple Composite Hypothesis Testing

$$\mathcal{H}_i = \{ \boldsymbol{\nu} \mid i^*(\boldsymbol{\nu}) = i \} \qquad i \in [K]$$

(Frequentist) uniform type 1 error control.

Families of approaches to BAI

- Upper and Lower confidence bounds [Bubeck et al., 2011, Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann and Kalyanakrishnan, 2013, Jamieson et al., 2014],
- Racing or Successive Rejects/Eliminations [Maron and Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010, Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013],
- Thompson Sampling [Russo, 2016] (hemidemisemiBayesian)
- Track-and-Stop [Garivier and Kaufmann, 2016].

Outline

Statistician's toolbox

5 Algorithms

6 Extensions

Change of Measure

If the observations are likely under both ν and λ , yet $i^*(\nu) \neq i^*(\lambda)$, then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016]),

For bandit models μ and λ , stopping time au, and event $\mathcal{E} \in \mathcal{F}_{ au}$,

$$\sum_{i=1}^{K} \mathbb{E}_{\boldsymbol{\nu}}[N_{i}(\tau)] \operatorname{KL}(\nu_{i} \| \lambda_{i}) \geq d\left(\mathbb{P}_{\boldsymbol{\nu}}(\mathcal{E}), \mathbb{P}_{\boldsymbol{\lambda}}(\mathcal{E})\right)$$

Change of Measure

If the observations are likely under both ν and λ , yet $i^*(\nu) \neq i^*(\lambda)$, then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016])

For bandit models μ and λ , stopping time au, and event $\mathcal{E} \in \mathcal{F}_{ au}$,

$$\sum_{i=1}^{K} \mathbb{E}_{\boldsymbol{\nu}} [N_i(\tau)] \operatorname{\mathsf{KL}}(\nu_i \| \lambda_i) \geq \ d\left(\mathbb{P}_{\boldsymbol{\nu}}(\mathcal{E}), \mathbb{P}_{\boldsymbol{\lambda}}(\mathcal{E}) \right)$$

Theorem (Garivier and Kaufmann [2016])

Let μ and λ be bandit models with $i^*(\nu) \neq i^*(\lambda)$. Then for any δ -correct algorithm

$$\sum_{i=1}^{K} \mathop{\mathbb{E}}_{\nu} \left[\mathsf{N}_{i}(\tau) \right] \mathsf{KL}(\nu_{i} \| \lambda_{i}) \geq d(\delta, 1 - \delta)$$

Sample Complexity Consequence

Starting point:

$$\mathbb{E}_{m{
u}}[au] \sum_{i=1}^{K} rac{\mathbb{E}_{m{
u}}[N_i(au)]}{\mathbb{E}_{m{
u}}[au]} \operatorname{\mathsf{KL}}(
u_i \| \lambda_i) \ \geq \ d(\delta, 1-\delta)$$

hence

$$\mathbb{E}_{\boldsymbol{\nu}}^{\mathbb{E}}[\tau] \max_{\boldsymbol{w} \in \bigtriangleup_{K}} \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\boldsymbol{\nu})} \sum_{i=1}^{K} w_{i} \operatorname{\mathsf{KL}}(\nu_{i} \| \lambda_{i}) \geq d(\delta, 1-\delta)$$

so

Theorem (Garivier and Kaufmann [2016])

$$\mathbb{E}_{oldsymbol{
u}}[au] \geq T^*(oldsymbol{
u}) d(\delta, 1-\delta)$$

where

$$\frac{1}{T^*(\boldsymbol{\nu})} = \max_{\boldsymbol{w} \in \bigtriangleup_K} \min_{\boldsymbol{\lambda} \in Alt(\boldsymbol{\nu})} \sum_{i=1}^K w_i \operatorname{\mathsf{KL}}(\nu_i \| \lambda_i)$$

Example

$$K = 5 \text{ arms}, \mu = (.3, .4, .5, .6, .7).$$

Bernoulli

$$T^{*}(\mu) = 203.4$$

Gaussian (
$$\sigma^2=1$$
) $\mathcal{T}^*(oldsymbol{\mu})~=~893.5$

Outline

Statistician's toolbox

4 Sample Complexity Lower Bound

5 Algorithms

6 Extensions

Algorithms

- Sampling rule ?
- Stopping rule ?
- Recommendation rule ?

$$\hat{l} = \underset{i \in [K]}{\operatorname{argmax}} \hat{\mu}_i(\tau)$$

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal proportions

$$m{w}^*(m{
u}) = rgmax_{m{w}\in riangle_K} \min_{m{\lambda}\in riangle riangle riangle_i} \sum_{i=1}^K w_i \operatorname{\mathsf{KL}}(
u_i \| \lambda_i)$$

Sampling Rule

Look at the lower bound again. Any good algorithm must sample with optimal proportions

$$oldsymbol{w}^*(oldsymbol{
u}) \ = \ rgmax_{oldsymbol{w}\in riangle_K} \min_{oldsymbol{
u}\in riangle_K} \ \sum_{i=1}^K w_i \operatorname{\mathsf{KL}}(
u_i \| \lambda_i)$$

Idea: draw $I_t \sim w^*(\hat{\mu}(t))$.

- Ensure $N_i(t)/t \rightarrow w_i^*$ by "forced exploration"
- Draw arm with $N_i(t)/t$ below w_i^* (tracking)
- Computation

Stopping Rule

When do we have enough evidence to stop? Generalized Likelihood Ratio Test (GLRT)

$$Z_t = \ln rac{P_{\hat{\mu}(t)}(data)}{\max_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(data)}$$

Stopping Rule

When do we have enough evidence to stop? Generalized Likelihood Ratio Test (GLRT)

$$Z_t = \ln rac{P_{\hat{\mu}(t)}(data)}{\max_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(data)}$$

Turns out, GLRT statistic equals

$$Z_t = \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\hat{\boldsymbol{\mu}}(t))} \sum_{i=1}^{K} N_i(t) \operatorname{KL}(\hat{\mu}_i(t) \| \lambda_i)$$

i.e. lower bound with $\hat{\mu}(t)$ plug-in.

Stopping Rule

When do we have enough evidence to stop? Generalized Likelihood Ratio Test (GLRT)

$$Z_t = \ln rac{P_{\hat{\mu}(t)}(data)}{\max_{\lambda \in \operatorname{Alt}(\hat{\mu}(t))} P_{\lambda}(data)}$$

Turns out, GLRT statistic equals

$$Z_t = \min_{\boldsymbol{\lambda} \in \mathsf{Alt}(\hat{\boldsymbol{\mu}}(t))} \sum_{i=1}^{K} N_i(t) \operatorname{KL}(\hat{\mu}_i(t) \| \lambda_i)$$

i.e. lower bound with $\hat{\mu}(t)$ plug-in.

Roughly: stop when $Z_t \ge \ln \frac{1}{\delta}$. Make precise with careful universal coding (MDL) argument.

All in all

Final result: for Track-and-Stop algorithms

$$\limsup_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}\left[\tau\right]}{\ln \frac{1}{\delta}} = T^*(\boldsymbol{\mu})$$

Very similar optimality result for **Top Two Thompson Sampling** by Russo [2016]

Outline

- 2 Model
- 3 Statistician's toolbox
- 4 Sample Complexity Lower Bound
- 5 Algorithms

Beyond asymptotic bounds

Okay, so good algorithms have

$$\mathbb{E}_{oldsymbol{\mu}}[au] \ \le \ \mathcal{T}^*(oldsymbol{\mu}) \ln rac{1}{\delta} + ext{small}.$$

What about lower-order terms? "Moderate confidence" regime!

- Dependence on $\ln \ln \frac{1}{\delta}$
- Dependence on In K.

[Simchowitz et al., 2017, Chen et al., 2017b]

Beyond Best Arm

Practical and fundamental question: solving more complex pure exploration problems.

Combinatorial Pure Exploration

- Best k-set
- Shortest path
- Spanning tree
- . . .

Combinatorial Pure Exploration

- Best k-set
- Shortest path
- Spanning tree
- . . .

Combinatorial collection \mathcal{F} of subsets of [K].

$$i^* = i^*(\boldsymbol{\nu}) = \operatorname{argmax}_{S \in \mathcal{F}} \sum_{i \in S} \mu_i.$$

[Chen et al., 2017a] Track-and-stop-like algorithms. Can compute lower bound. Dense.

Game Tree Search

Goal: find maximin action

$$i^* := \arg \max_i \min_j \mu_{i,j}$$

Sparsity in the Lower Bound (depth 2)

Kaufmann and Koolen [2017]

Open problem: algorithms incorporating appropriate pruning?

Sparsity in the Lower Bound (depth 3)

oracle weights $w^* = (w_1, w_2, w_3, w_4)$ as a function of μ_3 for $\mu = (16, 5, \mu_3, 0)$

It's complicated. But not intractable.

Conclusion

Pure Exploration is an interesting, hot, promising area.

