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Question

Complexity of interactive learning.

Medical testing [Villar et al., 2015]

Online advertising and website optimisation [Zhou et al., 2014]

Monte Carlo planning [Grill et al., 2016], and

Game-playing AI [Silver et al., 2016]
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Pure Exploration

Query: Which is . . .

the most effective drug dose?

the most appealing website layout?

the safest next robot action?

Method

statistical experiments in physical or simulated environment,
interactively and adaptively.

Main scientific questions:

sample complexity of interactive learning
# experiments as function of query structure and environment

Design of efficient pure exploration systems
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Formal model

Environment (Multi-armed bandit model)

K distributions ν1, . . . , νK with means µ1, . . . , µK .
Best arm

i∗ = argmax
i∈[K ]

µi

Strategy

Stopping rule τ ∈ N
In round t ≤ τ sampling rule picks It ∈ [K ]. See Xt ∼ νIt .
Recommendation rule Î ∈ [K ].

Realisation of interaction: (I1,X1), . . . , (Iτ ,Xτ ), Î .

Two objectives: sample efficiency τ and correctness Î = i∗.
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Two objectives: sample efficiency τ and correctness Î = i∗.



Objective

Two main flavours:

fixed budget : fix τ = T , optimise P(Î = i∗)

fixed confidence : fix P(Î = i∗) ≤ δ, optimise E[τ ].

Notation

Ni (t) =
t∑

s=1

1 {Is = i} and µ̂i (t) =
1

Ni (t)

t∑
s=1

Xs1 {Is = i}
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A statistician’s view

Active Sequential Multiple Composite Hypothesis Testing

Hi = {ν | i∗(ν) = i} i ∈ [K ]

(Frequentist) uniform type 1 error control.



Families of approaches to BAI

Upper and Lower confidence bounds [Bubeck et al., 2011,
Kalyanakrishnan et al., 2012, Gabillon et al., 2012, Kaufmann
and Kalyanakrishnan, 2013, Jamieson et al., 2014],

Racing or Successive Rejects/Eliminations [Maron and
Moore, 1997, Even-Dar et al., 2006, Audibert et al., 2010,
Kaufmann and Kalyanakrishnan, 2013, Karnin et al., 2013],

Thompson Sampling [Russo, 2016] (hemidemisemiBayesian)

Track-and-Stop [Garivier and Kaufmann, 2016].
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Change of Measure
If the observations are likely under both ν and λ, yet
i∗(ν) 6= i∗(λ), then the algorithm cannot stop and be correct.

Theorem (Kaufmann, Cappé, and Garivier [2016])

For bandit models µ and λ, stopping time τ , and event E ∈ Fτ ,

K∑
i=1

E
ν

[Ni (τ)] KL(νi‖λi ) ≥ d (Pν(E),Pλ(E))

Theorem (Garivier and Kaufmann [2016])

Let µ and λ be bandit models with i∗(ν) 6= i∗(λ). Then for any
δ-correct algorithm

K∑
i=1

E
ν

[Ni (τ)] KL(νi‖λi ) ≥ d(δ, 1− δ)
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Sample Complexity Consequence
Starting point:

E
ν

[τ ]
K∑
i=1

Eν [Ni (τ)]

Eν [τ ]
KL(νi‖λi ) ≥ d(δ, 1− δ)

hence

E
ν

[τ ] max
w∈4K

min
λ∈Alt(ν)

K∑
i=1

wi KL(νi‖λi ) ≥ d(δ, 1− δ)

so

Theorem (Garivier and Kaufmann [2016])

E
ν

[τ ] ≥ T ∗(ν)d(δ, 1− δ)

where

1

T ∗(ν)
= max

w∈4K

min
λ∈Alt(ν)

K∑
i=1

wi KL(νi‖λi )



Example

K = 5 arms, µ = (.3, .4, .5, .6, .7).

Bernoulli
T ∗(µ) = 203.4

Gaussian (σ2 = 1)
T ∗(µ) = 893.5
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Algorithms

Sampling rule ?

Stopping rule ?

Recommendation rule ?

Î = argmax
i∈[K ]

µ̂i (τ)



Sampling Rule

Look at the lower bound again. Any good algorithm must sample
with optimal proportions

w∗(ν) = argmax
w∈4K

min
λ∈Alt(ν)

K∑
i=1

wi KL(νi‖λi )

Idea: draw It ∼ w∗(µ̂(t)).

Ensure Ni (t)/t → w∗i by “forced exploration”

Draw arm with Ni (t)/t below w∗i (tracking)

Computation
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Stopping Rule

When do we have enough evidence to stop?
Generalized Likelihood Ratio Test (GLRT)

Zt = ln
Pµ̂(t)(data)

maxλ∈Alt(µ̂(t)) Pλ(data)

Turns out, GLRT statistic equals

Zt = min
λ∈Alt(µ̂(t))

K∑
i=1

Ni (t) KL(µ̂i (t)‖λi )

i.e. lower bound with µ̂(t) plug-in.

Roughly: stop when Zt ≥ ln 1
δ . Make precise with careful universal

coding (MDL) argument.
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All in all

Final result: for Track-and-Stop algorithms

lim sup
δ→0

Eµ [τ ]

ln 1
δ

= T ∗(µ)

Very similar optimality result for Top Two Thompson Sampling
by Russo [2016]
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Beyond asymptotic bounds

Okay, so good algorithms have

E
µ

[τ ] ≤ T ∗(µ) ln
1

δ
+ small.

What about lower-order terms? “Moderate confidence” regime!

Dependence on ln ln 1
δ

Dependence on lnK .

[Simchowitz et al., 2017, Chen et al., 2017b]



Beyond Best Arm

Practical and fundamental question: solving more complex pure
exploration problems.

max-sum

BAI
max

Maximin Action 

Identification

max-min

Monte Carlo Tree Search

(max-min)*

Pure Exploration Problems

Fully Dense Fixed Sparsity Variable Sparsity

Combinatorial Pure
 Exploration

:

general



Combinatorial Pure Exploration

Best k-set

Shortest path

Spanning tree

. . .

Combinatorial collection F of subsets of [K ].

i∗ = i∗(ν) = argmax
S∈F

∑
i∈S

µi .

[Chen et al., 2017a]
Track-and-stop-like algorithms. Can compute lower bound. Dense.
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Game Tree Search

max

min

µ1,1

1

µ1,2

2

1

min

µ2,1

1

µ2,2

2

2

Goal: find maximin action

i∗ := arg max
i

min
j
µi ,j



Sparsity in the Lower Bound (depth 2)

Kaufmann and Koolen [2017]

Sparsity Pattern

max

min

•••• •◦◦ •◦◦◦ •◦

Oracle weights w∗ supported on only 7 of the 13 leaves.

Open problem: algorithms incorporating appropriate pruning?



Sparsity in the Lower Bound (depth 3)

max

min

max

µ1 µ2 µ3 µ4
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oracle weights w∗ = (w1,w2,w3,w4) as a function of µ3 for
µ = (16, 5, µ3, 0)

It’s complicated. But not intractable.



Conclusion

Pure Exploration is an interesting, hot, promising area.
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