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Objective

Definition (Regret)
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[Hazan et al., 2007]

dinT

(w € RY)

/

Worst-case regret

Convex Exp-concave Strongly convex
linear, hinge, logistic, squared distance
absolute squared

/S S\



Big Questions

Can we make adaptive methods for online convex optimisation
that are

@ worst-case safe

@ exploit curvature automatically

@ computationally efficient




Big Questions

Can we make adaptive methods for online convex optimisation
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@ worst-case safe
@ exploit curvature automatically

@ computationally efficient

And can we adapt to other important regimes?
@ Mixed or in-between cases?
@ Stochastic data? Bandits [Seldin and Slivkins, 2014]

@ Absence of curvature? Experts [Koolen and Van Erven, 2015]
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For every optimisation algorithm tuning is crucial.
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So let's learn optimal tuning from data.
Key obstacle: avoid learning 1 at slow rate itself.

Breakthrough: Multiple Eta Gradient algorithm (MetaGrad)



Second-order Regret Bound

Theorem
The regret of MetaGrad is bounded by

Ry = O(min{ﬁ, W})

where
—

Vr = Z((wt —u*)TVﬁ(wt))2

t=1
measures variance compared to the offline optimum
w* = argmin, 0., fi(u)

Note: Optimal tuning depends on unknown optimum w*.
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Since surrogate is exp-concave for each fixed 7, we can use online

quasi-Newton method like Online Newton Step [Hazan et al., 2007] to get
predictions w; that achieve logarithmic regret:
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To learn the best 77 we combine the predictions w,’ for multiple 7 into a single
master prediction w; using an experts algorithm for combining multiple
learning rates similar to Squint [Koolen and Van Erven, 2015], to get:

T T
> G(w) = G(w!) < O(ninT) ¥
t=1 t=1

=0
Difficulty: Master has to perform well under multiple loss functions
simultaneously. No standard experts algorithm works!

Together: — 3", #/(u) < O(dIn T) for each 7 and wu, resulting in

;
Rr < Z(wtfu)Tgt < war}Vﬁ = O(\/V}‘dln T).
=1
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MetaGrad Algorithm 2 (B +207g97) !
w; <+ w; — 1;2;g (1 + 2n;r;)

A T2 T3 ~ Online Newton Step
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MetaGrad Adapts to Curvature '
MetaGrad regret bound: V

R = O(\/W)

For a-exp-concave or a-strongly convex losses, MetaGrad
ensures

Rr = O(dInT)

without knowing c.

Same result for fixed f; = f (classical optimisation) even without
curvature via derivative condition.

Curvature implies Q(V7) cumulative slack between loss and its
tangent lower bound.
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Consider i.i.d. losses f; ~ P with stochastic optimum 6
u* = argminE f(u)

Goal is small pseudo-regret compared to u*:

T T
P= > flwe) = Y Alw)
t=1 t=1

Corollary (with Peter Griinwald)

For any B-Bernstein P, MetaGrad keeps the expected regret below

ER; < O((dInT)7" T%) .

Fast rates without curvature: e.g. absolute loss, hinge loss, ...

Reason

Bernstein bounds E[V3}] above by E[R}]. “Solve” regret bound.




Experiments
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(a) Offline: fi(u) = |u—1/4| (b) Stochastic Online: f,(u) = |u —
xe| where x; = £1 i.i.d. with proba-
bilities 0.4 and 0.6.

Figure: Examples of fast rates on functions without curvature. MetaGrad
incurs logarithmic regret O(log T), while AdaGrad incurs O(v/T) regret,
matching its bound.
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MetaGrad adapts to a wide range of environments:
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