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Our new algorithm Squint
• adapts to the difficulty of the learning

problem by learning the learning rate,

• thereby integrating both the popular
second-order and quantile adaptivities,

• at the run time of standard Hedge.
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In round t = 1, 2, . . .

• Learner plays a probability distribution
wt = (w1

t , . . . , wK
t ) on experts

• Adversary reveals the expert loss vector
`t = (`1

t , . . . , `K
t ) ∈ [0, 1]K

• Learner incurs loss wᵀ
t `t

The goal is to have small regret

Rk
T :=

T

∑
t=1

wᵀ
t `t︸ ︷︷ ︸

Learner

−
T

∑
t=1

`k
t︸ ︷︷ ︸

Expert k

with respect to every expert k at every time T.

Future work
Loss range adaptivity, bandits, online convex optimization

Classic Hedge result
The Hedge algorithm with learning rate η

wk
t+1 :=

e−ηLk
t

∑k e−ηLk
t

where Lk
t =

t

∑
s=1

`k
s ,

upon proper tuning of η ensures

Rk
T ≺

√
T ln K for each expert k.

Tight for adversarial (worst-case) losses.
Underwhelming in practice.

Second-order adaptivity
Cesa-Bianchi, Mansour, and Stoltz 2007, Hazan and Kale 2010, Chiang, Yang,
Lee, Mahdavi, Lu, Jin, and Zhu 2012, De Rooij, Van Erven, Grünwald, and
Koolen 2014, Gaillard, Stoltz, and Van Erven 2014, Steinhardt and Liang 2014

Rk
T ≺

√
Vk

T ln K for each expert k.

for some second-order Vk
T ≤ Lk

T ≤ T

• stochastic case, learning sub-algorithms

• specialized algorithms, hard-coded ln K.

Quantile adaptivity
Hutter and Poland 2005, Chaudhuri, Freund, and Hsu 2009, Chernov and Vovk
2010, Luo and Schapire 2014

Prior π on experts:

min
k∈K

Rk
T ≺

√
T
(
− ln π(K)

) for each subset
K of experts

• over-discretization, company baseline

• specialized algorithms, hard-coded T.
“impossible tunings”. efficiency.

Squint guarantees both

Squint algorithm with bound

RKT ≺
√

VKT
(
− ln π(K) + CT

) for each subset
K of experts

where RKT = Eπ(k|K) Rk
T and VKT = Eπ(k|K) Vk

T
denote the average (under the prior π) among
the reference experts k ∈ K of the cumula-
tive regret Rk

T = ∑T
t=1 rk

t and the (uncentered)
variance of the excess losses Vk

T = ∑T
t=1(r

k
t )

2

(where rk
t = (wt − ek)

ᵀ`t).

pretty two-line proof

Squint potential motivation
Fix prior π on experts k ∈ {1, . . . , K} and prior
γ on learning rates η ∈ [0, 1/2].

Potential function (weighted sum of objectives)

Φt := E
π(k)γ(η)

[
eηRk

t−η2Vk
t
]

,

and associated weights

wk
t+1 :=

π(k)Eγ(η)

[
eηRk

t−η2Vk
t η
]

normalisation
.

1 = Φ0 ≥ Φ1 ≥ Φ2 ≥ · · ·
Φt+1 −Φt =

E
π(k)γ(η)

[
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t
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≤
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[
eηRk

t−η2Vk
t η(wt+1 − ek)

ᵀ`t+1

]
= 0

ex−x2
≤ 1 + x for x ≥ −1/2

by the choice of weights wt+1

Regret guarantee

Choose k and fix η̂ =
Rk

T
2Vk

T
. Now as

1 ≥ ΦT ≥ π(k)γ(η̂)eη̂Rk
T−η̂2Vk

T = π(k)γ(η̂)e
(Rk

T )2

4Vk
T

we have

Rk
T ≤ 2

√
Vk

T
(
− ln π(k)− ln γ(η̂)

)
.

For quantile bound take ∑k∈K

Three priors
Idea: have prior γ(η) put sufficient mass
around optimal η̂

1. Uniform prior (generalizes to conjugate)

γ(η) = 2

Efficient algorithm, CT = ln VKT .

2. Chernov&Vovk (2010) prior

γ(η) =
ln 2

η ln2(η)

Not efficient, CT = ln ln VKT .

3. Improper(!) log-uniform prior

γ(η) = 1/η

Efficient algorithm, CT = ln ln T.

Squint with log-uniform prior
Closed-form expression for weights:
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∫ 1/2

0
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constant time per expert per round
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Combinatorial concept class C ⊆ {0, 1}K:

• Shortest path

• Spanning trees

• Permutations

Component Squint guarantees:

Ru
T ≺

√
Vu

T
(
comp(u) + KCT

) for each
u ∈ conv(C).

The reference set of experts K is subsumed by
an “average concept” vector u ∈ conv(C), for
which our bound relates the coordinate-wise
average regret Ru

T = ∑t,k ukrk
t to the averaged

variance Vu
T = ∑t,k uk(rk

t )
2 and the prior en-

tropy comp(u).

No range factor
Drop-in replacement for Component Hedge

Koolen, Warmuth, and Kivinen 2010 with same run-time


