Towards Characterizing the First-order Query Complexity of Learning
(Approximate) Nash Equilibria in Zero-sum Matrix Games
Hédi Hadiji ${ }^{(2),(3)}$, Sarah Sachs ${ }^{(2)}$, Tim van Erven ${ }^{(2)}$ and Wouter M. Koolen ${ }^{(1),(4)}$
(1): Centrum Wiskunde \& Informatica (2): University of Amsterdam, Korteweg-de Vries Institute for Mathematics (3): Université Paris-Saclay (4): University of Twente

Summary

Nash equilibria have been central to game theory since Von Neumann, but how fast can we compute them?

- The best upper bound is achieved by letting a minimizing and a maximizing online learning algorithm play against each other. But is there a better way?
- Our contributions:

1. Fascinating insights into why all existing techniques to prove lower bounds must fail!
2. The first non-trivial lower bound.

Setup and Definitions

We study two-player zero-sum simultaneous-play matrix games.

Minimax problem: For a $K \times K$ pay-off matrix M with entries in $[-1,+1]$ and randomized strategies $p, q \in \Delta_{K}:$

$$
\min _{p} \max _{q} p^{\top} M q=\bar{p}^{\top} M \bar{q}=\max _{q} \min _{p} p^{\top} M q
$$

Nash-Equilibrium: (\bar{p}, \bar{q}) is a Nash-equilibrium if neither player can gain by changing their play:

$$
p^{\top} M \bar{q} \geqslant \bar{p}^{\top} M \bar{q} \geqslant \bar{p}^{\top} M q \quad \forall p, q .
$$

ε-Nash-Equilibrium: Players cannot gain more than ε :

$$
p^{\top} M \bar{q}+\varepsilon \geqslant \bar{p}^{\top} M \bar{q} \geqslant \bar{p}^{\top} M q-\varepsilon \quad \forall p, q
$$

Query Model: Players learn expected pay-off for all their actions under randomized play of opponent:

$$
\left(p_{t}, q_{t}\right) \mapsto\left(M^{\top} p_{t}, M q_{t}\right)
$$

Question: What is the smallest number of queries $T(\varepsilon)$ we need to find an ε-Nash-equilibrium?

Why Do All Existing Lower Bound Techniques Fail?

Discrete entries are too easy!

Theorem 1. Suppose we know in advance that all entries in M come from a known countable alphabet \mathcal{A} (with at least two elements). E.g. all entries in M are either -1 or +1 . Then it is possible to fully identify M with 1 query, and hence $T(\varepsilon) \leqslant 1$.
This rules out all lower bound approaches that have been successful for other query models:

- Reasoning about specific classes of binary payoff matrices [FGGS15]
- Reducing from submodular optimization over the hypercube by encoding it as a binary matrix [HK16]
- Randomly generating a matrix with binary entries

Computing Exact Nash Equilibria

But continuous-valued entries are potentially much harder!
Theorem 2. If the entries in M can take any values in $[-1,+1]$, then the number of queries required to fully identify M is exactly K.

> And exactly computing a Nash Equilibrium is essentially as hard as identifying the full matrix!

Theorem 3. The number of queries required to compute an exact Nash Equilibrium is at least $T(0) \geqslant \frac{K}{2}-1$

Approximate Nash Equilibria

Upper (blue) and lower (red) bounds on the query complexity of computing an ε-equilibrium for $K \times K$ matrix games.
Theorem 4 (Lower Bound). For any $\varepsilon \leqslant 1 /\left(e 2^{11} K^{4}\right)$, the number of queries required to compute an ε-Nash Equilibrium is at least

$$
T(\varepsilon) \geqslant\left(\frac{-\log \left(2^{11} K^{4} \varepsilon\right)}{\log \left(2^{11 / 2} K^{5 / 2}\right)+\log \left(-\log \left(2^{11} K^{4} \varepsilon\right)\right)}-1\right) \wedge(K-3)=\tilde{\Omega}\left(\log \frac{1}{K \varepsilon}\right)
$$

Proof Sketch for Exact Nash

Idea: construct adversary answering queries by the learner so as to delay revealing the equilibrium for as long as possible.

- We restrict ourselves to a ball $\mathcal{B}_{\|\cdot\|_{1, \infty}}\left(\frac{I_{K}}{2}, \frac{1}{16 K^{2}}\right)$ of matrices around the (scaled) identity.
- For any such matrix, the unique exact Nash equilibrium is a pair of fully mixed strategies.
- Querying a fully mixed equilibrium strategy yields feedback proportional to $1 \Leftarrow$ "equaliser".
- Based on the feedback to the queries so far, a subset of consistent matrices remains: every round adds $2 K$ equality constraints.
- We show that there is a common Nash equilibrium for the consistent subset only if the vector $\mathbf{1}$ is in the span of the feedback.
- Our adversary keeps 1 out of the span of the feedback for $\frac{K}{2}-1$ rounds. \Leftarrow "dimension-as-aresource"
- Technique: maintain consistent matrix M_{t}. Upon query $\left(p_{t+1}, q_{t+1}\right)$, rank-one update $M_{t+1}=M_{t}+$ $\bar{p}_{t+1} u_{t}^{\top}$, with \bar{p}_{t+1} the rejection of p_{t+1} from the span of p_{1}, \ldots, p_{t}, and u_{t} orthogonal to 1 and
- the span of q_{1}, \ldots, q_{t} (consistency),
- the past feedback $M_{t}^{\top} p_{t}$ (proof artifact),
- the forced feedback part $M_{t}^{\top} p_{t+1}$.

