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Summary
Nash equilibria have been central to game
theory since Von Neumann, but how fast
can we compute them?

• The best upper bound is achieved by letting a
minimizing and a maximizing online learning al-
gorithm play against each other. But is there a
better way?

• Our contributions:

1. Fascinating insights into why all existing
techniques to prove lower bounds must
fail!

2. The first non-trivial lower bound.

Setup and Definitions
We study two-player zero-sum simultaneous-play ma-
trix games.

Minimax problem: For a K × K pay-off matrix
M with entries in [−1, +1] and randomized strategies
p, q ∈ ∆K :

min
p

max
q

p⊤Mq = p̄⊤Mq̄ = max
q

min
p

p⊤Mq.

Nash-Equilibrium: (p̄, q̄) is a Nash-equilibrium if
neither player can gain by changing their play:

p⊤Mq̄ ⩾ p̄⊤Mq̄ ⩾ p̄⊤Mq ∀p, q.

ε-Nash-Equilibrium: Players cannot gain more
than ε:

p⊤Mq̄ + ε ⩾ p̄⊤Mq̄ ⩾ p̄⊤Mq − ε ∀p, q.

Query Model: Players learn expected pay-off for
all their actions under randomized play of opponent:

(pt, qt) 7→ (M⊤pt, Mqt).

Question: What is the smallest number of queries
T (ε) we need to find an ε-Nash-equilibrium?

Why Do All Existing Lower Bound Techniques Fail?
Discrete entries are too easy!

Theorem 1. Suppose we know in advance that all entries in M come from a known countable alphabet A
(with at least two elements). E.g. all entries in M are either −1 or +1. Then it is possible to fully identify
M with 1 query, and hence T (ε) ⩽ 1.

This rules out all lower bound approaches that have been successful for other query models:
• Reasoning about specific classes of binary payoff matrices [FGGS15]
• Reducing from submodular optimization over the hypercube by encoding it as a binary matrix [HK16]
• Randomly generating a matrix with binary entries

Computing Exact Nash Equilibria
But continuous-valued entries are potentially much harder!

Theorem 2. If the entries in M can take any values in [−1, +1], then the number of queries required to
fully identify M is exactly K.

And exactly computing a Nash Equilibrium is essentially as hard
as identifying the full matrix!

Theorem 3. The number of queries required to compute an exact Nash Equilibrium is at least T (0) ⩾ K
2 − 1.
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Upper (blue) and lower (red) bounds on the query complexity of computing an ε-equilibrium for K × K matrix games.

Theorem 4 (Lower Bound). For any ε ⩽ 1/(e 211K4), the number of queries required to compute an ε-Nash
Equilibrium is at least

T (ε) ⩾
( − log(211K4ε)

log(211/2K5/2) + log(− log(211K4ε)) − 1
)

∧
(

K − 3
)

= Ω̃
(

log 1
Kε

)
.

Proof Sketch for Exact Nash
Idea: construct adversary answering queries by the
learner so as to delay revealing the equilibrium for
as long as possible.

• We restrict ourselves to a ball B∥·∥1,∞

(
IK

2 , 1
16K2

)
of matrices around the (scaled) identity.

– For any such matrix, the unique exact Nash
equilibrium is a pair of fully mixed strategies.

– Querying a fully mixed equilibrium strategy
yields feedback proportional to 1 ⇐ “equaliser”.

• Based on the feedback to the queries so far, a sub-
set of consistent matrices remains: every round
adds 2K equality constraints.

• We show that there is a common Nash equilibrium
for the consistent subset only if the vector 1 is
in the span of the feedback.

• Our adversary keeps 1 out of the span of the
feedback for K

2 − 1 rounds. ⇐ “dimension-as-a-
resource”

• Technique: maintain consistent matrix Mt. Upon
query (pt+1, qt+1), rank-one update Mt+1 = Mt +
p̄t+1u⊤

t , with p̄t+1 the rejection of pt+1 from the
span of p1, . . . , pt, and ut orthogonal to 1 and

– the span of q1, . . . , qt (consistency),
– the past feedback M⊤

t pt (proof artifact),
– the forced feedback part M⊤

t pt+1.
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