Summary

Nash equilibria have been central to game
theory since Von Neumann, but how fast
can we compute them?

e The best upper bound is achieved by letting a
minimizing and a maximizing online learning al-
cgorithm play against each other. But is there a
better way?

e Our contributions:

1. Fascinating insights into why all existing

techniques to prove lower bounds must
fail!

2. The first non-trivial lower bound.

Setup and Definitions

We study two-player zero-sum simultaneous-play ma-
trix games.

Minimax problem: For a K x K pay-off matrix
M with entries in [—1, +1] and randomized strategies

p,q € Ak:

minmaxp' Mg = p' Mg = maxminp' Mg.
P q g p

Nash-Equilibrium: (p, g) is a Nash-equilibrium if
neither player can gain by changing their play:
p'Mg=p'Mg=>p'Mq  Vp,q.

e-Nash-Equilibrium: Players cannot gain more
than e:

p Mg+e>p Mg=p Mg—e  Vp,q.

Query Model: Players learn expected pay-off for
all their actions under randomized play of opponent:

(pt,qt) + (M 'py, Mqy).

Question: What is the smallest number of queries
T'(¢) we need to find an e-Nash-equilibrium?

ing the First-order Query Complexity
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Why Do All Existing Lower Bound Techniques Fail?

Discrete entries are too easy!

Theorem 1. Suppose we know in advance that all entries in M come from a known countable alphabet A
(with at least two elements). E.q. all entries in M are either —1 or +1. Then it is possible to fully identify
M with 1 query, and hence T(g) < 1.

This rules out all lower bound approaches that have been successtul for other query models:
o Reasoning about specific classes of binary payoff matrices |[FGGS15)]

e Reducing from submodular optimization over the hypercube by encoding it as a binary matrix [HK16]

e Randomly generating a matrix with binary entries

Computing Exact Nash Equilibria

But continuous-valued entries are potentially much harder!

Theorem 2. If the entries in M can take any values in |[—1,+1], then the number of queries required to
fully identify M s exactly K.

And exactly computing a Nash Equilibrium is essentially as hard
as identifying the full matrix!

Theorem 3. The number of queries required to compute an exact Nash Equilibrium is at least T'(0) > % — 1.

Approximate Nash Equilibria
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Upper (blue) and lower (red) bounds on the query complexity of computing an e-equilibrium for K X K matrix games.

Theorem 4 (Lower Bound). For any e < 1/(e2'1K*), the number of queries required to compute an e-Nash
Equilibrium s at least
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Proof Sketch for Exact Nash

Idea: construct adversary answering queries by the
learner so as to delay revealing the equilibrium for
as long as possible.

We restrict ourselves to a ball By (If : 16;@)

of matrices around the (scaled) identity:.

— For any such matrix, the unique exact Nash
equilibrium is a pair of fully mixed strategies.

— Querying a fully mixed equilibrium strategy
yields feedback proportional to 1 <= “equaliser”.

Based on the feedback to the queries so far, a sub-
set of consistent matrices remains: every round
adds 2K equality constraints.

We show that there is a common Nash equilibrium
for the consistent subset only if the vector 1 is
in the span of the feedback.

e Our adversary keeps 1 out of the span of the
feedback for % — 1 rounds. < “dimension-as-a-
resource’

e Technique: maintain consistent matrix M;. Upon
query (pi+1,qi+1), rank-one update My = M; +
Pry1u, , with psy1 the rejection of p,y; from the
span of py,...,p:, and u; orthogonal to 1 and

,¢¢ (consistency),

— the past feedback M,' p; (proof artifact),

— the forced feedback part M,' p;_ 1.
|

— the span of ¢4, ...
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