

Pure Exploration with Multiple Correct Answers

Rémy Degenne CWI
Centrum Wiskunde & Informatica

Wouter M. Koolen Centrum Wiskunde & Informatica

Topic: Pure Exploration

Task: answer query most effective drug dose?

most appealing website layout?

safest next robot action?

Setting: interactive learning

Main scientific questions

- Efficient systems
- Sample complexity as function of query and environment

Slogan

Pure exploration with multiple correct answers requires stabilised methods to pacify discontinuity.

Model

K-armed bandit, parameterised by arm means $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$. Set \mathcal{M} of possible environments.

Set \mathcal{I} of possible answers. Correct **answer** function $i^* : \mathcal{M} \to \mathcal{I}$.

Minimum Threshold

Strategy:

- Stopping rule $\tau \in \mathbb{N}$
- In round $t \le \tau$ sampling rule picks arm $A_t \in [K]$ and observes $X_t \sim \mu_{A_t}$.
- Recommendation rule $\hat{I} \in [K]$.

Definition. A strategy is δ -PAC if $\mathbb{P}_{\mu}(\hat{I} \neq i^*(\mu)) \leq$ δ for every bandit model $\mu \in \mathcal{M}$.

Goal: minimise sample complexity $\mathbb{E}_{\mu}[\tau]$ among δ -PAC strategies.

State of the Art: Lower Bound

Answer $i \in \mathcal{I}$ has altern. $\neg i := \{ \lambda \in \mathcal{M} | i^*(\lambda) \neq i \}$

Theorem (Castro 2014, Garivier and Kaufmann 2016). Fix a δ -PAC strategy. Then for every bandit model $\mu \in \mathcal{M}$

$$\mathbb{E}_{\boldsymbol{\mu}}[\tau] \geq \frac{\ln(1/\delta)}{\max \inf_{\boldsymbol{w} \in \triangle_K \boldsymbol{\lambda} \in \neg i^*(\boldsymbol{\mu})} \sum_{i=1}^K w_i \operatorname{KL}(\mu_i || \lambda_i)}$$

State of the Art: Algorithm

Good algorithm **must** — **oracle** proportions

$$w^*(\mu) = \underset{\boldsymbol{w} \in \triangle_K}{\operatorname{argmax}} \inf_{\boldsymbol{\lambda} \in \neg i^*(\mu)} \sum_{i=1}^K w_i \operatorname{KL}(\mu_i || \lambda_i)$$

Track-and-Stop [Garivier and Kaufmann, 2016] Crux: draw $A_t \sim \boldsymbol{w}^*(\hat{\boldsymbol{\mu}}(t))$.

- Ensure $\hat{\mu}(t) \rightarrow \mu$ by forced exploration
- ullet this ensures $oldsymbol{w}^*(\hat{oldsymbol{\mu}}_t)
 ightarrow oldsymbol{w}^*(oldsymbol{\mu})$ assuming w^* is continuous
- Draw arm i with $N_i(t)/t$ below w_i^* (tracking)

Discontinuity with Single Answer

Can w^* really be discontinuous? At an instance μ where the lower bound does not diverge?

Example problem: Minimum Threshold

First Result: Continuity Salvaged

Theorem. The oracle allocation w^* , when viewed as a set-valued function, is upper hemicontinuous. Moreover, its output is always a convex set.

Intuition On bandit model μ , our empirical distribution will be a convex combination of δ_1 and δ_2 .

⇒ need to rethink Tracking!

Theorem. Track-and-Stop with C-tracking is δ -PAC with asymptotically optimal sample complexity. Track-and-Stop with **D-tracking** may **fail** to converge.

Multiple-answer Problems

Set-valued correct answer function $i^*: \mathcal{M} \to 2^{\mathcal{I}}$.

Rethinking the Lower Bound

Single-answer lower bound is based on KL contraction. With multiple correct answers, this gives the wrong leading constant. \Rightarrow we do direct proof.

Theorem. Any δ -PAC algorithm verifies

$$\liminf_{\delta o 0} rac{\mathbb{E}_{oldsymbol{\mu}}[au_{\delta}]}{\ln(1/\delta)} \, \geq \, D(oldsymbol{\mu})^{-1},$$

where
$$D(\boldsymbol{\mu}) = \max_{i \in i^*(\boldsymbol{\mu})} \max_{\boldsymbol{w} \in \triangle_K} \inf_{\boldsymbol{\lambda} \in \neg i} \sum_{k=1}^K w_k d(\mu_k, \lambda_k)$$

for any multiple answer instance μ with sub-Gaussian arm distributions.

On Matching the Lower Bound

Complication: $w^*(\mu)$, the set of maximisers of $D(\mu)$, is unsalvageably discontinuous.

Example: Any Low Arm

At μ , the oracle weights are $w^*(\mu) = \{\delta_1, \delta_2\}$. Tracking $w^*(\hat{\mu}_t)$ will play from convex hull.

Solution: Make it Sticky

New Sticky-Track-and-Stop Sampling Rule:

Find least (in "sticky order") oracle answer in confidence region C_t . Track its oracle weights at $\hat{\mu}_t$.

Main Result

When coupled with a good stopping rule,

Theorem. Sticky Track-and-Stop is asymptotically *optimal*, i.e. it verifies for all $\mu \in \mathcal{M}$,

$$\lim_{\delta \to 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}[\tau_{\delta}]}{\ln(1/\delta)} = D(\boldsymbol{\mu})^{-1}.$$

Non-Sticky is Actually Dangerous

Histogram of stopping time, $\delta = e^{-80}$.

Where to go from here

- Practical efficiency
- Avoid forced exploration
- Regret (WIP), RL ...
- Moderate confidence $\delta \not\to 0$ regime; bounds
- Understand sparsity patterns
- Dynamically expanding planning horizon