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Topic: Pure Exploration

Task:
answer query

most effective drug dose?

most appealing website layout?

safest next robot action?

Setting: interactive learning

or

experiment

outcome
42

Main scientific questions
• Efficient systems
• Sample complexity as function of query

and environment

Slogan

Pure exploration with multiple
correct answers requires stabilised
methods to pacify discontinuity.

Model

K-armed bandit, parameterised by
arm means µ = (µ1, . . . , µK).
Set M of possible environments.

Set I of possible answers. Correct
answer function i∗ :M→ I .

Best Arm

Minimum
Threshold

Strategy:

• Stopping rule τ ∈N

• In round t ≤ τ sampling rule picks
arm At ∈ [K] and observes Xt ∼ µAt .
• Recommendation rule Î ∈ [K].

Definition. A strategy is δ-PAC if Pµ
(

Î 6= i∗(µ)
)
≤

δ for every bandit model µ ∈ M.

Goal: minimise sample complexity Eµ[τ] among
δ-PAC strategies.

State of the Art: Lower Bound
Answer i ∈ I has altern. ¬i := {λ ∈ M|i∗(λ) 6= i}

Theorem (Castro 2014, Garivier and Kaufmann
2016). Fix a δ-PAC strategy. Then for every bandit
model µ ∈ M

Eµ[τ] ≥
ln(1/δ)

max
w∈4K

inf
λ∈¬i∗(µ)

K

∑
i=1

wi KL(µi‖λi)

State of the Art: Algorithm
Good algorithm must −→ oracle proportions

w∗(µ) = argmax
w∈4K

inf
λ∈¬i∗(µ)

K

∑
i=1

wi KL(µi‖λi)

Track-and-Stop [Garivier and Kaufmann, 2016]
Crux: draw At ∼ w∗(µ̂(t)).
• Ensure µ̂(t)→ µ by forced exploration
• this ensures w∗(µ̂t)→ w∗(µ)

assuming w∗ is continuous
• Draw arm i with Ni(t)/t below w∗i

(tracking)

Discontinuity with Single Answer
Can w∗ really be discon-
tinuous? At an instance
µwhere the lower bound
does not diverge?

Example problem:
Minimum Threshold

µ
w∗ = δ2

w∗ = δ1

w∗(µ) = conv ({δ1, δ2}).

First Result: Continuity Salvaged
Theorem. The oracle allocation w∗, when viewed
as a set-valued function, is upper hemicontinuous.
Moreover, its output is always a convex set.

Intuition On bandit model µ, our empirical distri-
bution will be a convex combination of δ1 and δ2.
⇒ need to rethink Tracking!

Theorem. Track-and-Stop with C-tracking is δ-PAC
with asymptotically optimal sample complexity.
Track-and-Stop with D-tracking may fail to converge.

Multiple-answer Problems
Set-valued correct answer function i∗ :M→ 2I .

ε-Best Arm ε-Min.
Thresh.

Any Low
Arm

Any Sign

i∗

iF

Rethinking the Lower Bound
Single-answer lower bound is based on KL con-
traction. With multiple correct answers, this gives
the wrong leading constant.⇒we do direct proof.

Theorem. Any δ-PAC algorithm verifies

lim inf
δ→0

Eµ[τδ]

ln(1/δ)
≥ D(µ)−1,

where D(µ) = max
i∈i∗(µ)

max
w∈4K

inf
λ∈¬i

K

∑
k=1

wkd(µk, λk)

for any multiple answer instance µ with sub-Gaussian
arm distributions.

On Matching the Lower Bound
Complication: w∗(µ), the set of maximisers of
D(µ), is unsalvageably discontinuous.

Example: Any Low Arm

µ
w∗ = δ2

w∗ = δ1

At µ, the oracle weights are w∗(µ) = {δ1, δ2}.
Tracking w∗(µ̂t) will play from convex hull.

Solution: Make it Sticky
New Sticky-Track-and-Stop Sampling Rule:
Find least (in “sticky order”) oracle answer in
confidence region Ct. Track its oracle weights
at µ̂t.

µ̂t

Ct

< <

Main Result
When coupled with a good stopping rule,

Theorem. Sticky Track-and-Stop is asymptotically
optimal, i.e. it verifies for all µ ∈ M,

lim
δ→0

Eµ[τδ]

ln(1/δ)
= D(µ)−1 .

Non-Sticky is Actually Dangerous
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Story: arcsine law

Histogram of stopping time, δ = e−80.

Where to go from here
• Practical efficiency
• Avoid forced exploration
• Regret (WIP), RL . . .
• Moderate confidence δ 6→ 0 regime; bounds
• Understand sparsity patterns
• Dynamically expanding planning horizon


