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RECURRENCE ANALYSIS FLAVOR

Define recursively Recursion for value of minimax problem.

SCOPE AND CONTRIBUTION

Linear regression is one of the fundamental ma-
chine learning tasks.
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We consider the online version of linear regres- Py = Z xia] | Vr (sr,0%) = — min Z 0Tz —y,)° |,
sion with fixed design (instances are revealed — IER? \ “—
from the outset, labels are predicted sequen- ;
tially). We show that the exact minimax strategy | | and Vi (8¢,07) = minmax ( (D41 = Yeg1) +
is tractable. Yt Jet
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o Ideal reqularization emerges from the problem Vit (8t + v 1®eg1, 07 + 07 41) )

or, equivalently,

e Case study for incorporating unlabeled data
xl Pox, with the state (sy, 07) after t rounds defined by ‘
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least squares re-weighted future instances

e Optimal strategy employs intricate shrinkage

PROTOCOL

Given: z1,...,xp € R?
Fort=1,2,....,1T":

Pi-..Pri Td*+d?) time.
We can compute /7, 7 in O(Td" +d”) time (and sg = 0, 02 = 0).

THE MM STRATEGY

After t rounds, define a summary statistic s; =

2221 YsTq We detfine the MM strategy to pre-
dict

e [earner issues prediction y, € R

CRUX: VALUE STAYS QUADRATIC
We show by induction that

o Adversary reveals label y, € R

. ) 2
e Learner incurs loss (7, — y,)".
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Vt(stagt) — StPtSt — O0; 1+ Ve,

Upg1 = w;sr+1Pt+13ta (MM)

with the v, coetficients recursively defined by

BOX-CONSTRAINED LABELS v =0, =1 + B2 al Pr@es.

Consider the label sequence constraint

OFFLINE PROBLEM
The best linear predictor in hindsight:
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(where |y,| < B;) and hence the value equals
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CLIPPING

l The condition (1) is necessary to ensure that the
label constraint |y,| < B; on the adversary is
inactive tor the worst-case label.

We show that (MM) is minimax for this set pro-
vided that the budgets B = (By,...,Br) are
compatible with the covariates by satisfying

is ordinary least squares
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with loss
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By > Y |@] Pyxy| By, (1)

q=1

In this case, the minimax regret is

If (1) is violated then the Adversary is clipped to
y, = £B; and the Learner benefits by clipping
as well. This breaks the nice quadratic recur-
s101.

and the maximin probability distribution for el
Vpr1 puts weight 1/2 + @], Py 15,/ (2Bi41) on o8 REGRET BOUND

+Biy1.
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ONLINE PROBLEM

The goal of the learner is to predict almost as
well as the best linear predictor in hindsight.
The overhead is measured by the regret

For box-constrained label with B; = B we

el ! =~ prove that

T T ELLIPSE-CONSTRAINED LABELS

Ry = Z(gjt — min » (0Tax; —

HeR?
t=1 R

Rr < O(B*dInT)

Fix a budget R > 0, and consider label se-
quences

(independent of scale of x4, ..., x71).

We consider the minimax problem

min max - - - minmax Rp
Yi Ya Yr YT

o Worst-case ordering of given set of covari-

’ We show that (MM) is minimax for this set. ates? In 1d increasing magnitude seems
hardest. How does this generalize?

So, what is the optimal strategy to choose 7,

iven y,,...,y,_1?
5 & Jt—1 In fact, the regret of (MM) equals

W Worst-case covariates?  We conjecture

POPULAR APPROACHES a , composition of orthogonal 1d problems.
Rr = Z YrTe ey Would improve regret to O(B*dIn(T'/d)).

Thi hat this aleorithm h Gap between minimax and strategies like
1> HIeans t &.lt : > g(.)n.t m has two very [Vovk, 1998] with correct asymptotics.
special properties. First, it is a strong equalizer O(Inln T) difference?

in the sense that it suffers the same regret on

all 27 sign-flips of the labels. And second, it is Worst case covariates with adversarial de-

adaptive to the complexity R of the labels. sign? Is the minimax analysis tractable,
perhaps under some reasonable condi-
tions?




