Sequential Test femgthe Lowest Mean: From Thompson to Murphy Sampling

e Lower Confidence Bounds
Play A; = argmin, LCB,(¢)

e Design of pure exploration algorithms for complex queries?

— Monte Carlo Tree Search

e Valid anytime confidence intervals for derived quantities? e Thompson Sampling (11, ; is posterior after  — 1 rounds)

Sample 0 ~ I1;_4, then play A; = argmin, 0,.

— Mminimum

¢ Murphy Sampling condition on low minimum mean
Sample 8 ~ I1; 4 (-|min, 6, < 7), then play A; = argmin, 6,.

Fix Bernoulli yq, ..., ux and threshold . Learn o-correct

Fort=1,..., T
o Pickarm A;
o See Xt ~ HA,

Say m € {<, >}

e When u* < 7 conditioning is immaterial: 8 ~ p and MS = TS.

¢ When y* > v conditioning results in 0 ~ (yq,...,7%,..., UK)-
Index a lowered to 7y with probability o , (yi ) |Russo, 2016].

P, (error) < 6
|

Theorem 1. Asymptotic optimality: N,(t)/t — w, () for all p

Sampling rule @ @

Thompson Sampling v R
Lower Confidence Bounds ¥ V
Murphy Sampling v oV

Generic lower bound [Castro, 2014, Garivier and Kaufmann, 2016]
shows sample complexity for any Jd-correct algorithm is at least

Lemma 2. Any anytime sampling strateqy (A;) ensuring ]\[ L — w* ()

and good stopping rule T5 Quarantee lim sup;_. 1;—51 < T*(w).
5

p = linspace(—1,1,10) € H- p = linspace(1/2,1,5) € H-

%g(r)nple Complexity as a function of -log(delta) (N=5000 repetitions) 7SO%mpIe Complexity as a function of -log(delta) (N=500 repetitions)
—

-+~ TS + AGG
— MS + AGG

-log(delta) -log(delta)

E|7s] as a function of In(1/6). Throughout y = 0.

empirical proportions versus theoretical optimal weights empirical proportions versus theoretical optimal weights

LCB sampling rule LCB sampling rule

—— MS sampling rule ‘\ == TS sampling rule
% - Conjectured Weights for LCB 0.6 1 '\ —»— MS sampling rule
K Optimal Weights

For symmetric algorithms we boost the lower bound on y* < 7 to
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Sampling proportions vs O0=e P Nand s =e 7 (v).

. Deep trees. Adaptive tree expansion. Foundation for MCTS and RL.
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identical or similar

Multiple low arms s conclude u* < <y faster
tighter confidence interval for y*

For LCB we adopt the obvious LCByin (f) = min, LCB,(#).

For UCB we investigate three approaches:
e Box: Straightforward idea: UCBn () = min, UCB,(#).
e GLRT: New sum-of-deviations confidence bound.
e Agg: Pool samples from multiple arms. Upper bound on any
average is upper bound on minimum. Biased but narrower.

We identify threshold function T(x) = x 4 o(x) such that for every
fixed subset S C |[K], wh.p. > 11—,

Vt: |Ng(t)d" (fis(t), minp,) — Inln Ng(¢)
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UCB for minimum: Agg dominates Box with 1, 3 and 10 low arms.

Sample Complexity for delta=0.1 (N=1000 repetitions)
000000

Support used when stopping for delta=0.1 (N=1000 repetitions)
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Agg beats Box and GLRT in adapting to the number k of low arms.
Here u, € {—1,0} and v = 0.




