

MetaGrad: Multiple Learning Rates in Online Learning

Tim van Erven Wou

Wouter M. Koolen

Abstract

To get good performance in online convex optimization you need to select and tune your algorithm based on lots of technical stuff.

Grand goal: single algorithm that works well in all cases.

Multiple Eta Gradient (MetaGrad) algorithm learns optimal learning rate from data.

Provable Guarantees:

- Robust to worst-case convex losses
- Adapts to curvature (strong-convex, exp-concave)
- Exploits stochastic data (Bernstein)

Online Convex Optimization Setting

- 1: **for** t = 1, 2, ..., T **do**
- 2: Learner plays w_t in convex domain \mathcal{U}
- 3: Environment reveals convex loss function $f_t: \mathcal{U} \to \mathbb{R}$
- 4: Learner incurs loss $f_t(\mathbf{w}_t)$, observes gradient $\mathbf{g}_t = \nabla f_t(\mathbf{w}_t)$
- 5: **end for**

Measure **regret** w.r.t. $u \in \mathcal{U}$: Regret $_T^u = \sum_{t=1}^T f_t(w_t) - \sum_{t=1}^T f_t(u)$.

Standard Theory

Rates based on curvature:

Convex f_t	\sqrt{T}	GD with $\eta_t \propto \frac{1}{\sqrt{t}}$
Strongly convex f_t	ln T	GD with $\eta_t \propto \frac{1}{t}$
Exp-concave f_t	$d \ln T$	ONS with $\eta_t = \text{constant}$

[Bartlett, Hazan, and Rakhlin, 2007], [Do et al., 2009] handle two cases: strongly convex + worst-case convex

MetaGrad Covers Many Cases

Convex f_t	$\sqrt{T \ln \ln T}$
Exp-concave, strongly convex f_t	$d \ln T$
β -Bernstein i.i.d. f_t	$(d \ln T)^{\frac{1}{2-\beta}} T^{\frac{1-\beta}{2-\beta}}$

Bernstein distributions with $\beta = 1$ very common:

Absolute loss*	$f_t(u) = u - X_t $	ln T
Hinge loss*	$\max\{0, 1 - Y_t\langle \boldsymbol{u}, \boldsymbol{X}_t\rangle\}$	$d \ln T$

Main Theorem

Theorem 1. MetaGrad's regret is bounded by

$$\operatorname{Regret}_{T}^{\boldsymbol{u}} \leq \sum_{t=1}^{T} (\boldsymbol{w}_{t} - \boldsymbol{u})^{\mathsf{T}} \boldsymbol{g}_{t} \leq \min \begin{cases} O\left(\sqrt{V_{T}^{\boldsymbol{u}} d \ln T} + d \ln T\right) \\ O(\sqrt{T \ln \ln T}), \end{cases}$$

where $V_T^{\boldsymbol{u}} = \sum_{t=1}^T ((\boldsymbol{u} - \boldsymbol{w}_t)^\intercal \boldsymbol{g}_t)^2$.

Fast Rates: Directional Derivative Condition

Theorem 2. *If there exist a, b* > 0 *such that all f_t satisfy*

$$f_t(\boldsymbol{u}) \geq f_t(\boldsymbol{w}) + a(\boldsymbol{u} - \boldsymbol{w})^{\mathsf{T}} \nabla f_t(\boldsymbol{w}) + b((\boldsymbol{u} - \boldsymbol{w})^{\mathsf{T}} \nabla f_t(\boldsymbol{w}))^2 \quad \forall \boldsymbol{w} \in \mathcal{U},$$
then $\operatorname{Regret}_T^{\boldsymbol{u}} \leq O(d \ln T).$

- Satisfied by **exp-concave** and **strongly convex** functions [Hazan, Agarwal, and Kale, 2007] with a = 1.
- Satisfied for any fixed convex function $f_t = f$ with minimizer u, even without any curvature, with a = 2.

Fast Rates: Stochastic Bernstein Condition

Consider $f_t \stackrel{\text{iid}}{\sim} \mathbb{P}$ with stochastic optimum $u^* = \arg\min_{u \in \mathcal{U}} \mathbb{E}_f[f(u)]$ satisfying the (linearized) (B, β)-Bernstein condition

$$\mathbb{E}\left[\left((\boldsymbol{w}-\boldsymbol{u}^*)^\mathsf{T}\nabla f(\boldsymbol{w})\right)^2\right] \leq B\mathbb{E}\left[(\boldsymbol{w}-\boldsymbol{u}^*)^\mathsf{T}\nabla f(\boldsymbol{w})\right]^\beta \quad \forall \boldsymbol{w} \in \mathcal{U}.$$

Example: Hinge loss (unit ball): $\beta = 1$, $B = \frac{2\lambda_{\max}(\mathbb{E}[XX^{\intercal}])}{\|\mathbb{E}[YX]\|}$

Theorem 3 (Koolen, Grünwald, Van Erven, 2016).

Combining Adversarial Guarantees and Stochastic Fast Rates in Online Le sample for the continuous of the continuous of

Experiments (Proof-of-Concept)

- MetaGrad: $O(\ln T)$ regret, AdaGrad: $O(\sqrt{T})$, match bounds
- Functions neither strongly convex nor smooth

MetaGrad Algorithm

Proof Ideas

Analysis based on second-order surrogate loss. For each η :

$$\ell_t^{\eta}(\boldsymbol{u}) := \eta(\boldsymbol{u} - \boldsymbol{w}_t)^{\intercal} \boldsymbol{g}_t + \eta^2 ((\boldsymbol{u} - \boldsymbol{w}_t)^{\intercal} \boldsymbol{g}_t)^2$$

Since surrogate is **exp-concave** for each fixed η , we can use **online quasi-Newton method** like Online Newton Step [Hazan et al., 2007] to get predictions w_t^{η} that achieve logarithmic regret:

$$\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta}) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{u}) \leq O(d \ln T) \qquad \forall \boldsymbol{u} \in \mathcal{U}$$

To learn the **best** η we combine the predictions \boldsymbol{w}_t^{η} for multiple η into a single master prediction \boldsymbol{w}_t using an **experts algorithm for combining multiple learning rates** similar to Squint [Koolen and Van Erven, 2015], to get:

$$\underbrace{\sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t) - \sum_{t=1}^{T} \ell_t^{\eta}(\boldsymbol{w}_t^{\eta})}_{=0} \leq O(\ln \ln T) \qquad \forall \eta$$

Difficulty: Master has to perform well under multiple loss functions simultaneously. No standard experts algorithm works!

Together: $-\sum_{t=1}^{T} \ell_t^{\eta}(u) \leq O(d \ln T)$ for each η and u, resulting in

$$\sum_{t=1}^{T} (\boldsymbol{w}_t - \boldsymbol{u})^{\mathsf{T}} \boldsymbol{g}_t \leq \frac{O(d \ln T)}{\eta} + \eta V_T^{\boldsymbol{u}} \Rightarrow O\left(\sqrt{V_T^{\boldsymbol{u}} d \ln T}\right).$$