
Mon20

™
Neural Information
Processing Systems
Foundation

December 8th 2014

Learning the Learning Rate for Prediction with Expert Advice
Wouter M. Koolen Tim van Erven Peter D. Grünwald

Summary
In online learning, tuning the learning rate is essential but tricky.
We present LLR, a new algorithm for setting the learning rate that

• performs as well as the best learning rate in hindsight, and
• is as fast as the standard exponential weights algorithm.

The problem

0 (perfect)

minimax

high (bad)

re
gr

et

problem instances

worst-case safe algorithm
special-purpose algorithm

desired ideal

Fundamental model for learning: Hedge setting
K experts

. . .

In round t = 1, 2, . . .

• Learner plays distribution wt = (w1
t , . . . , wK

t ) on experts
• Adversary reveals expert losses `t = (`1

t , . . . , `K
t ) ∈ [0, 1]K

• Learner incurs loss wᵀ
t `t

Evaluation criterion is the regret w.r.t. the best expert in hindsight:

RT :=
T

∑
t=1

wᵀ
t `t︸ ︷︷ ︸

Learner

−min
k

T

∑
t=1

`k
t︸ ︷︷ ︸

best expert

The exponential weights algorithm
The Hedge or exponential weights algorithm with learning rate η:

wk
t :=

e−ηLk
t−1

∑k e−ηLk
t−1

where Lk
t−1 :=

t−1

∑
s=1

`k
s .

The worst-case safe tuning η =
√

8 ln K
T results in

RT ≤
√

T/2 ln K. tight for worst-case data

Prior work on adaptive tuning
Second-order Bounds [Cesa-Bianchi, Mansour, Stoltz ML’07]:

RT ≤ O
(√

VT ln K
)

, (1)

where VT = ∑T
t=1 vt and vt is variance of loss `k

t when k ∼ wt.

FlipFlop [De Rooij and us, JMLR’14]:
Satisfies (1) and is never worse than Follow-the-Leader (η = ∞):

RT ≤ CR∞
T . (2)

Big question

Can we compete with all η?

Intermediate learning rates can be crucial

0

3

6

9

10−4 10−2 1 102

re
gr

et
(×

10
00

)

learning rate η

Hedge(η)
Worst-case bound and η
AdaHedge
FlipFlop
LLR and ηah

t∗

Rleft min
T
Rbest

T
≈ 2011

81 ≈ 25

New results
The Learning the Learning Rate (LLR) algorithm satisfies (1) and (2)
and in addition

RT ≤ Õ(ln K ln 1
η ) R

η
T for all η ∈ [ηah

t∗ , 1].

• Trumps
√

T additive overhead.
• In above range ln 1

η = O(ln T).

• So RT = Õ(Tα) whenever minηR
η
T = O(Tα) for some α > 0.

LLR algorithm in a nutshell
• maintains a finite grid η1, . . . , ηimax , ηah

• cycles over the grid. For each ηi:

– Play the ηi Hedge weights

– Evaluate ηi by its mixability gap

– Until its budget doubled

• adds next lower grid point on demand

ηt not monotonic in t

Resource consumption: same as Hedge (trick!)

LLR algorithm key ideas
• Basic idea: budgeted timesharing. Cycle through ηs from an

exponentially spaced grid to keep their regrets approximately
equal. Then our regret is

RT ≤ #gridpoints×Rbest η
T .

• Refinement: Use prior distribution on ηs to get

RT ≤
Rbest η

T
prior of best η

independent of the number of grid points.
• Problem: does not quite work, because regret Rη

T for fixed η is
not monotonically increasing with time T
• Solution: cumulative mixability gap ∆η

T = ∑T
t=1 δ

η
t where

δ
η
t = Hedge loss−mix loss = wᵀ

t `t − −1
η ln ∑

k
wk

t e−η`k
t

is a good proxy (tightest monotic lower bound on Rη
T).

• Building block of independent interest:

δ
2η
t ≤ 6Kδ

η
t . exponentially spacing η suffices


