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Summary
In online learning, tuning the learning rate is essential but tricky.
We present LLR, a new algorithm for setting the learning rate that

• performs as well as the best learning rate in hindsight, and
• is as fast as the standard exponential weights algorithm.

The problem

0 (perfect)

minimax

high (bad)

re
gr

et

problem instances

worst-case safe algorithm
special-purpose algorithm

desired ideal

Fundamental model for learning: Hedge setting
K experts

. . .

In round t = 1, 2, . . .

• Learner plays distribution wt = (w1
t , . . . , wK

t ) on experts
• Adversary reveals expert losses `t = (`1

t , . . . , `K
t ) ∈ [0, 1]K

• Learner incurs loss wᵀ
t `t

Evaluation criterion is the regret w.r.t. the best expert in hindsight:

RT :=
T

∑
t=1

wᵀ
t `t︸ ︷︷ ︸

Learner

−min
k

T

∑
t=1

`k
t︸ ︷︷ ︸

best expert

The exponential weights algorithm
The Hedge or exponential weights algorithm with learning rate η:

wk
t :=

e−ηLk
t−1

∑k e−ηLk
t−1

where Lk
t−1 :=

t−1

∑
s=1

`k
s .

The worst-case safe tuning η =
√

8 ln K
T results in

RT ≤
√

T/2 ln K. tight for worst-case data

Prior work on adaptive tuning
Second-order Bounds [Cesa-Bianchi, Mansour, Stoltz ML’07]:

RT ≤ O
(√

VT ln K
)

, (1)

where VT = ∑T
t=1 vt and vt is variance of loss `k

t when k ∼ wt.

FlipFlop [De Rooij and us, JMLR’14]:
Satisfies (1) and is never worse than Follow-the-Leader (η = ∞):

RT ≤ CR∞
T . (2)

Big question

Can we compete with all η?

Intermediate learning rates can be crucial
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New results
The Learning the Learning Rate (LLR) algorithm satisfies (1) and (2)
and in addition

RT ≤ Õ(ln K ln 1
η ) R

η
T for all η ∈ [ηah

t∗ , 1].

• Trumps
√

T additive overhead.
• In above range ln 1

η = O(ln T).

• So RT = Õ(Tα) whenever minηR
η
T = O(Tα) for some α > 0.

LLR algorithm in a nutshell
• maintains a finite grid η1, . . . , ηimax , ηah

• cycles over the grid. For each ηi:

– Play the ηi Hedge weights

– Evaluate ηi by its mixability gap

– Until its budget doubled

• adds next lower grid point on demand

ηt not monotonic in t

Resource consumption: same as Hedge (trick!)

LLR algorithm key ideas
• Basic idea: budgeted timesharing. Cycle through ηs from an

exponentially spaced grid to keep their regrets approximately
equal. Then our regret is

RT ≤ #gridpoints×Rbest η
T .

• Refinement: Use prior distribution on ηs to get

RT ≤
Rbest η

T
prior of best η

independent of the number of grid points.
• Problem: does not quite work, because regret Rη

T for fixed η is
not monotonically increasing with time T
• Solution: cumulative mixability gap ∆η

T = ∑T
t=1 δ

η
t where

δ
η
t = Hedge loss−mix loss = wᵀ

t `t − −1
η ln ∑

k
wk

t e−η`k
t

is a good proxy (tightest monotic lower bound on Rη
T).

• Building block of independent interest:

δ
2η
t ≤ 6Kδ

η
t . exponentially spacing η suffices


