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Summary The exponential weights algorithm New results

In online learning, tuning the learning rate is but The Hedge or exponential weights algorithm : The Learning the Learning Rate (LLR) algorithm satisfies (1) and (2)

We present LLR, a new algorithm for setting the learning rate that and in addition

Rr < O(InKIn) Ry forally € 730 1].

e performs as well as the , and
® is the standard exponential weights algorithm.

Trumps /T additive overhead.

In above range In % = O(InT).

R+ < V/T/2InK. { et for worstcase dat z So Rt = O(T*) whenever min,, R1 = O(T*) for some & > 0.

The worst-case safe tuning 17 = SI%K

The problem

worst-case safe algorithm desired ideal
special-purpose algorithm

high (bad) LLR algorithm in a nutshell

Prior work on adaptive tuning

1 1 1 max
Second-order Bounds [Cesa-Bianchi, Mansour, Stoltz ML'07]: maintains a N7 1 0]
cycles over the grid. For each 7*:

Rr < O (V/VrinK), - Play the
— Evaluate 7' by its
— Until its doubled

FlipFlop [De Rooij and us, JMLR'14]: adds next lower grid point on demand
Satisfies (1) and is never worse than Follow-the-Leader (17 = o0):
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where Vi = ZtT:l v; and v; is variance of loss 4‘ when k ~ w;.

Rt < CR%. (2)

B|g qUQStiOn Resource consumption: same as Hedge (trick!)

Can we compete with all #? . .
LLR algorithm key ideas

0 (pertect)
problem instances

Fundamental model for learning: Hedge setting

Intermediate learning rates can be crucial e Basic idea: budgeted timesharing. Cycle through #s from an
K experts @ '\ exponentially spaced grid to keep their regrets approximately
“ \y — Hedge(1) equal. Then our regret is
1} - Xg;ﬁ:;; bound and 7 Rt < #gridpoints X R pest ],
Inround t=1,2,... —— FlipFlop e Refinement: Use prior distribution on #s to get
. . . 1 K —— LLR and 17?;1 best 7
e Learner plays distribution w; = (w;, ..., w; ) on experts P < R
T =

o Adversary reveals expert losses £; = (¢},...,£5) € [0,1]¢ prior of best 7

independent of the number of grid points.
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Y e Problem: does not quite work, because regret R’% for fixed 7 is

not monotonically increasing with time T
e Solution: cumulative mixability gap A% = Y, 6/ where

: _ —y,
6/ = Hedge loss — mix loss = w[ﬁt—%anwte T
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e Learner incurs loss w/ ¢;

Evaluation criterion is the w.r.t. the best expert in hindsight:
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t=1 k  t=1
— e learning rate 7 o e Building block of independent interest:

is a good proxy (tightest monotic lower bound on RY).

Learner best expert
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Rl%est ~ T8 O 5 f T S 6K5;_7 . exponentially spacing 7 suffices



