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Goal Hinge Loss Example

We want to make efficient online learning algorithms that adapt au-
tomatically to the complexity of the environment.

First Step

Unregularized hinge loss on unit ball.

Consider losses £ ~ P with stochastic best expert k* = argmin, [E A

and gap min; .« E ok — Ek*] > (0. Then second-order bound (1) im-
E[RE] = O(1) [Gaillard et al., 2014].

. . . Dat ,yr) ~ Piid.
e Worst-case rates in adversarial environments (safe and robust) e Data (z,yt) 1.1

e Fast rates in favorable stochastic environments (practice)

plies constant regret e Hinge loss ¢;(u) = max{0,1 — y;x u}.

e Mean p = E|yx| and second moment D = E|zxT]|.

ZAmax(D)
e

Friendly Stochastic Environments

The Bernstein condition [Bartlett and Mendelson, 2006] says that
variance of excess loss is small near stochastic optimum.

e Bernstein withx =1 and B =

Key Observation

Modern Friendliness of Absolute Loss Example
adaptive stochastic environments Bernstein condition key to fast rates in statistical learning.
algorithms commgnly qua.nt1f1ed by Fix B > 0 and « € [0,1]. We say Absolute loss: -
bound regret condition relating Or(u) = |u— x|
in terzfns of variance to e ¢/ ~ P are (B, x)-Bernstein for stochastic experts if where x, = + % i.i.d. with probabilities 2/5 and 3/5.
variance regret

E[(¢— ()2 < BE[¢F— 1" vk
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Learning Model: Online Convex Optimization e / ~ IP are (linearized) (B, x )-Bernstein for stochastic OCO if

Inroundt=1,2,...
e Learner chooses w; € Y C R4
e Environment selects convex loss function ¢; : I/ — R
e Learner incurs loss /;(w;) and observes gradient V/;(w;)

0

:E[((w—u*)TW(w))z} < BE[(w — u*)TVl(w)]" Yw.
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, N Individual loss functions ~ Long-term average loss
See paper for extensions beyond iid.

Bernstein with xk = 1 and B = 5.
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Proof Ideas (OCO)

In-expectation for x = 1: Consider ¢ ~ IP with stochastic optimum
u* = argmin,,,, E [{(u)]|. The second-order regret bound (1) implies

Goal: small regret R¥ (or upper bound RY) w.r.t. every point u

Main Theorem

T T

R% p— ;(&(wt)—ét(u)), R% = ;(wt—u)TV&(wt).

In any stochastic setting satisfying the (B, k)-Bernstein condition, a second-
order regret bound (1) implies fast rates both in expectation:

).

and with high probability: for any 6 > 0, with probability at least 1 — 0,
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Second-order Regret Guarantees E[RL] = O (K? T

E[R¥ | <E[R¥ | <E \/V;L*K;f* < \/:E[V%*]K%*.

Rl < \/V{Kf} forall f € F (1)

Let P = (u — u*)TV/{;(u) denote the excess linearzed loss of u in

= round f. The Bernstein condition for x = 1 yields

RE =0 ((KT—ln(S)ﬁTﬂ).

A

Beats worst-case regret when vl = o(T) and KJ; small.

T T

E[V¥'] = ;:E[(x;‘f)z} < B;:E[x;“t] = BE[RY].

Two Examples Inspiration: Tsybakov Margin Condition

Classification: Y € {0,1}. IP(‘]P(Y =1|X) — 1/2| < t) < ct*

Combining the above two inequalities and solving for IE[R¥ | gives
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E[R¥ | < BK% .

Setting Hedge Setting Online Convex Optimization
F expertk € {1,2,...} uclf For k < 1: linearize (z¥ = x*(1 — ) *inf,_, {e* 'z +€"} for z >
Loss Linear w/¥; Convex £;(wy) X X 0) to show
Cmplx. K% = —In(k K¢ =dInT * L
| P g_ . (T) . Z 0 , easy moderate hard ci - €N {Vr}" } < F {R’%” } +¢-T-e
Variance Vi=Y, j(w/€ — ) V¥ =Y, ;((w —u)TVl(w)) N = 00 =1 a =0
Time/rd. O(1) per expert O(d“InT) plus projection Confusing case: predictors with equal risk but opposite predictions. High probability: requires sophisticated martingale argument.



