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MIXABILITY GAP
The mixability gap is

SUMMARY

AdaHedge is a new online
learning algorithm that adapts
to the difficulty of the data

Decision Theoretic Online Learning

01(M) = wy + €y — ( — %ln(wt : e_”et)).

Inroundst=1,...,7T"

1. Assign probabilities w; = (w;, . . .

K actions
2. Actions get losses £; € [0, 1]%

Worst-case data O (\/ L:In(K )) 3. Our loss: w; - £,

In Prediction with Expert Advice terms: d,(n)
measures the difference with a mixable loss

Difficulty Regret function.

In Bayesian terms: J;(7) measures the differ-
ence between randomizing according to the
posterior and mixing according to the poste-
I10r.

Easy data constant: O(K) Aim to minimize the regret

T
R(T) — wat . Et — L’??
t=1

Key Ideas ADAHEDGE

e Bounds on the mixability gap (see top-right | | where L7, = miny, Zf:l (% is the loss of the best Tune n optimally for a budget b(n) on the cu-

panel) play a crucial role in previous analyses action in hindsight.
of the Hedge algorithm.

mulative mixability gap Ar(n) = ZL 0¢ (1)

Increase the budget using the doubling trick.
e We only bound the mixability gap in the

analysis, but not in the algorithm! Algorithm

e Hedge predicts with exponential weights:
t—1
wy o< exp ( — nZé’;).
s=1

e Example: if one action is always better than o Its performance depends strongly on the
all others. learning rate n > 0.

. Start withn =1

. Run a new instance of Hedge with learning
rate n until Ar(n) exceeds budget
1
In(K).
e — 1) n(K)
. Setn < n/2 and goto 2.

e On easy data, the probabilities output by
Hedge converge on a single action. In this
case we improve the standard bounds.
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endent random variables and there exists a k™ such
fha ; I.I.D. losses Correlated losses

lgig}k B[k — 051 >0 forallte 77 AdaHedge has excellent practical performance

Then with probability at least 1—0 the regret of Ada-
Hedge 1s bounded by a constant:

N.B. Follow-the-leader does very well here, but gets linear regret > T'/2 — 1 in the worst case!

R(T) = O(K log(1 /5)).

CURRENT WORK

PROOF TECHNIQUES Avoid the Doubling Trick Weaker Conditions for Easy Data
Everyone bounds the mixability gap 9.

e Better performance in practice e Guarantee regret bounded by the best regret
of AdaHedge and Follow-the-Leader, up to

Standard Analysis
a small constant factor.

o 5till very clean analysis

e Optimize 7 after bounding d;(n) < 7/8. e Improved the worst-case bound to

Our Approach

L (T — L%)
< I T 8 |
o Optimize n before bounding! R(T) < 2\/ T In(K) + 3 In(K) +2

o [f the posterior probabilities w; converge on
a single action, the mixability gap goes to 0!
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